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Cooperation in repeated games has been widely studied in experimental settings; however, the duration
over which players participate in such experiments is typically confined to at most hours, and often to a
single game. Given that in real world settings people may have years of experience, it is natural to ask
how behavior in cooperative games evolves over the long run. Here we analyze behavioral data from three
distinct games involving over 500 individual experiments conducted over a two-year interval. First, in the
case of a standard linear public goods game we show that as players gain experience, they become less
generous both on average and in particular towards the end of each game. Second, we analyze a multiplayer
prisoner’s dilemma where players are also allowed to make and break ties with their neighbors, finding
that experienced players show an increase in cooperativeness early on in the game, but exhibit sharper
“endgame” effects. Third, and finally, we analyze a collaborative search game in which players can choose to
act selfishly or cooperatively, finding again that experienced players exhibit more cooperative behavior up to
an endgame effect. Together these results show consistent evidence of long-run learning, but also highlight
directions for future theoretical work that may account for the observed direction and magnitude of the
effects.

1. INTRODUCTION
The role of experience in social dilemmas has long been of interest to economists [Sel-
ten and Stoecker 1986; Andreoni 1988; Andreoni and Miller 1993; Ledyard 1995]. In
brief, the interest stems from the difference between the predictions of standard eco-
nomic theory and observed behavior in human subjects results. Theory predicts that in
finitely repeated games of cooperation, rational players should defect on all turns via
the familiar argument of backward induction [Osborne and Rubinstein 1994]. Whereas
experiments repeatedly show that a majority of human players tend to cooperate at
first and, as the game is repeated, steadily decline their cooperation rates until the
so-called end game approaches, yet cooperation levels rarely decline to decline to zero.
Kreps et al. [1982] proposed an ingenious solution to this puzzle—namely that players
are rational, but believe with some probability δ that other players employ a Tit-for-Tat
strategy, meaning that they will cooperate at least until their partner defects. Kreps
et al. [1982] then showed that if δ is sufficiently large, then it is in fact optimal for
a rational player to pretend to be altruistic initially, and then exploit his reputation
for cooperation by defecting toward the end of the game. An interesting corollary of
this result is that as long as the rationality of players is not common knowledge, ac-
tual altruism is unnecessary for cooperation to persist up until close to the end of the
game.

This explanation, however, raises an additional question: What happens to these
beliefs in the long run? Andreoni and Miller [1993] point out two possibilities. First,
assuming that “true” altruism is in fact rare or absent—as Kreps et al. [1982] imply—
this fact will eventually become common knowledge, and rational players will respond
by defecting earlier and earlier. In the long run, cooperation should disappear alto-
gether just as predicted by the backward induction argument. Second, however, if al-
truism really is present in sufficient degree, then as this knowledge becomes common,
cooperation could be sustained for longer and longer as altruists feel more confident
that cooperation will be reciprocated and even rational players see the benefit in defer-
ring their eventual defection. Depending on the actual distribution of altruism in the
population, in other words, the sequential equilibrium hypothesis is consistent either
with learning through experience leading to less cooperation or to more of it.
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Alternative theoretical arguments, meanwhile, also make mixed predictions about
the effect of experience on the tendency to cooperate. Andreoni [1995], for example, has
argued separately that cooperation observed in experiments could arise because of gen-
uinely altruistic beliefs that subjects bring with them from the outside world, but could
also arise because subjects do not fully understand the incentives with which they are
being presented. If the former applies, cooperation may persist indefinitely, whereas if
the latter is the case, then subjects should learn over time not to cooperate. Although
this explanation is theoretically distinct from the sequential equilibrium hypothesis, it
has the same consequence that, depending on the actual frequency of altruism in the
population, cooperation could either increase or decrease over time as subjects gain
experience.

Here we investigate long-run learning effects in three distinct games of coopera-
tion, representing a total of 571 web-based experiments conducted over a period of
two years and using a total of 466 unique individuals1. The first experiment consid-
ered a standard linear public goods game, where players were randomly assigned to
different network topologies, ranging from disconnected cliques to a random regular
graph [Suri and Watts 2011]. The second studied an iterated multiplayer prisoner’s
dilemma game, in which participants were allowed to update their partners at some
specified rate either by terminating existing partnerships or proposing new ones [Wang
et al. 2012]. Finally, the third experiment concerned networks of individuals search-
ing a hidden “fitness landscape” where each individual was exposed to the previous
locations and scores of three of their neighbors. Individuals therefore faced a repeated
choice between copying their neighbors’ best solution, thereby effectively free riding
on the efforts of their neighbors, or exploring new terrain, which as we show later
increased the common welfare of the group [Mason and Watts 2012].

All experiments were conducted using Amazon’s Mechanical Turk, a crowdsourcing
website that is increasingly popular with behavioral scientists as a “virtual lab” for
conducting human subjects experiments [Horton et al. 2011; Suri and Watts 2011; Pao-
lacci et al. 2010; Mason and Suri 2012; Mason and Watts 2012; Wang et al. 2012]. The
experiments described in this work required either 16 or 24 subjects to be present si-
multaneously for the duration of the experiment, with a maximum duration of roughly
30 minutes. In each case the researchers recruited a panel of volunteers who were
contacted repeatedly to participate in the experiments. Thus we exploit an unintended
feature of this recruiting process that allows us to investigate the impact of experience.
By examining how individual behavior changed over the course of many experiments,
we can begin to address the question of long-run learning.

Although motivated by the incomplete information argument outline above, we em-
phasize that the experiments we study differ from the idealized construction of Kreps
et al. [1982] in at least two important ways. First, implicit in the Kreps et al. [1982]
argument is the assumption that all players are present for the entire length of the
“game,” and hence at each stage have the same experience2. As noted above, how-
ever, our experiments were characterized by considerable heterogeneity of experience:
whereas a handful participated in over 100 experiments, the majority participated
in only one. In such an environment, the state of incomplete information postulated
by Kreps et al. [1982] might be prolonged indefinitely, leading either to slower rates of
learning or possibly even preventing such learning from occurring at all. Further com-

1Note: some players participated in more than one of the experiments we conducted, hence this total number
is smaller than the sum of the three experiment populations, as given in later sections.
2Reflecting a similar assumption, experimental studies of cooperation typically go to considerable lengths to
ensure that all subjects have the same experience: they are drawn from a relatively homogeneous population
(usually college students), receive the same training, and play the same number of games.
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plicating matters, observed correlations between experience and cooperation might
arise not because of learning at all, but simply on account of selection effects–that is
individuals who play more games might be more or less predisposed towards cooper-
ation than individuals who play few games, hence we must be careful to separate out
within-individual effects from selection effects.

Second, while the first game that we consider (the repeated public goods games)
bears a a reasonably close resemblance to the repeated prisoner’s dilemma of Kreps
et al. [1982], the other two games differ in potentially important ways. In particular,
the social networking game differs in that players were allowed to make and break
ties, a mechanism that generated large and significant increases in cooperation lev-
els [Wang et al. 2012]. The collaborative search game, meanwhile, although exhibiting
the essential features of a social dilemma, is not framed explicitly as a game of coop-
eration, and also confronts the player with a rather more complicated set of choices
than simply copy or explore. Precisely how important these differences are, and how
they affect learning in the long run, is not at all clear from the theory. Investigating
the effects of these difference on learning is one of the contributions of this work.

With all these caveats in mind, it is perhaps surprising that at a high level, our
findings are consistent with the spirit of Kreps et al. [1982]: i.e. that players are not
“truly” altruistic, but rather cooperate for strategic reasons. Our conclusion is based
on two observations. First, in the repeated public goods game, which of the three ex-
periments most closely resembles the setup for [Kreps et al. 1982], we do indeed see
declining rates of cooperation over the long run. Second, in all three experiments, we
see increasingly sharp “end-game” effects, meaning that experienced players switch
from high to low levels of cooperation more rapidly than inexperienced players, spend-
ing less time at intermediate levels. This finding is also consistent with the hypothesis
that cooperative players are cooperating at least in part to exploit their position rather
than simply for the sake of cooperating.

Attached to these very general and consistent observations, however, are two impor-
tant caveats. First, although we find diminishing rates of cooperation in the repeated
public goods game, the rate of learning is rather slow; specifically, we find that initial
rates of cooperation decline by only 50% over 110 games of 10 rounds each. Extrapolat-
ing from this finding, moreover, we conjecture that convergence to Nash would require
in excess of 200 games of 10 rounds each. Second, although we see sharper end-game
effects in all three instances, we do not consistently find lower overall rates of cooper-
ation. Quite to the contrary, in fact, in both the dynamic networks and collaborative
search experiments, overall rates of cooperation increase with experience, mostly on
account of increases in cooperative behavior in the early rounds (i.e. prior to the end-
game effect).

The remainder of this paper proceeds as follows. In the next section, we review re-
lated work and highlight the major differences between this work and our own. Then,
in Section 3, we describe the Investment Game, a repeated public goods game, and
show (a) that long-run play converges to unilateral defection, (b) that the so-called
end-game effect creeps forward, but that (c) both effects happen slowly. Next, in Sec-
tions 4 and 5 we examine the same effects in two other games of cooperation: the “So-
cial Networking Game,” a variant of the repeated Prisoner’s Dilemma game in which
players can make and break ties with each other, and “Wildcat Wells,” a game of col-
laborative search. Although we observe long-run learning effects in both games, we
also identify some notable differences arising from the presence of rewiring and re-
framing respectively. In particular, we see initial cooperation increasing over time, but
end-game effects becoming increasingly sharp. Finally, in section 6 we conclude with
some remarks about the theoretical and methodological implications of our work, as
well some suggestions for future experiments.
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2. RELATED WORK
As noted above, the theoretical literature on learning makes two predictions: one, that
with experience, players should “learn” to be less cooperative; and the other that they
should learn to become more so. Experimental evidence has also generated ambiguous
results with respect the learning hypothesis. Selten and Stoecker [1986] studied a se-
ries of 25 prisoner’s dilemma games of 10 rounds each, and found that defection tended
to creep earlier over time, in support of the rationality hypothesis. Andreoni and Miller
[1993], however, found precisely the opposite result: over the course of 20 PD games,
also of 10 rounds each, they found that defection tended to occur later with experience,
consistent with altruism. Meanwhile, earlier work by Andreoni [1988] found no evi-
dence to support either direction, and other experiments that use experienced players
generate indistinguishable results from those that use naive players [Isaac and Walker
1988]. Precisely how or if learning impacts play in repeated games therefore remains
an unresolved question.

In light of this related experimental work and the related theoeretical work de-
scribed in Section 1, our paper makes four main contributions to the literature on
long-run learning. First, because we have observations of individuals playing upwards
of 100 games, we are able to study learning effects over a much longer timescale than in
previous work. Second, in contrast previous studies, which focus on only one very spe-
cific game of cooperation—the iterated PD—we consider three rather distinct games of
cooperation, hence we are in a position to show that learning patterns depend on cer-
tain features of the game in ways that not anticipated by any existing theory. Third,
because we have much more data than previous experiments, we are able to analyze
not only the main effects of experience (on average payoff and contribution) but also
the interaction effects between experience and the game-round, allowing us to exam-
ine the dynamics of so-called endgame effects in more detail than previously possible.
And finally, whereas previous experiments have studied populations in which all play-
ers have the same experience, we study heterogeneous populations–a design feature
that more closely resembles real-world “games” of cooperation, in which individuals
very likely differ in age and experience.

3. COOPERATION ON STATIC NETWORKS
Suri and Watts [2011] (henceforth SW) conducted a variant of a linear public goods
game [Ledyard 1995], a game of cooperation that is widely studied in laboratory set-
tings. Each game comprised 10 rounds, where in each round each participant i was
allocated an endowment of e = 10 points, and was required to contribute 0 ≤ ci ≤ e
points to a common pool. Players’ payoffs were given by πi = ei − ci + a

k+1

∑
j∈Γ(i) cj ,

where Γ(i) was defined to include i and all its network neighbors, and k was the vertex
degree (all nodes in all networks had the same degree). Therefore, i’s contributions
were, in effect, divided equally among the edges of the graph that are incident on i,
where payoffs are correspondingly summed over i’s edges. From this payoff function it
is easy to show that when 1 < a < n, players face a social dilemma in that all players
contributing the maximum amount maximizes social welfare, but individually play-
ers are best off if they contribute nothing, thereby free-riding on the contributions of
others.

3.1. Experiment and Data
Initially, SW performed 70 preliminary experiments comprising groups of 4, 8 or 16
players each, intended to familiarize players with the game and recruit them to the
panel. After that, SW chose networks that spanned a wide range of possible struc-
tures between a collection of four disconnected cliques at one extreme, and a regular
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Fig. 1. Clockwise from top left: screen shot of Investment Game; network topologies (with dummy players
indicated in solid color); histogram of player experience; and average contribution by round

random graph at the other, where all networks comprised n = 24 players, each with
constant vertex degree k = 5. Next, SW conducted 69 experiments using these net-
works where all players were humans. After that, SW conducted an additional 39 ex-
periments where at least one, and most often four, dummy players designed to play
in prescribed manner. Thus, a total of 108 networked experiments with N = 24 were
conducted over a period of 1–2 months.3 Finally, roughly six months after completing
their networked experiments, SW also studied two variants on the networked game,
in which the rules of the game were identical but where the players’ view of their net-
works differed either by exposing (a) links between neighbors, or (b) links to the full
two-hop neighborhood. These comprised 28 more experiments. Overall, SW conducted
a total of 206 experiments over the course of roughly one year. A total of 315 unique
individuals participated in these experiments, where as Fig. 1 (bottom right) shows the
majority of subjects played only once, while a small number participated in more than
100. Fig. 1 (bottom left) shows per-contributions averaged over all all-human experi-
ments. As can be seen, average contributions start around 6 and then decline roughly
linearly, consistent with the canonical finding mentioned above.

3.2. Overall cooperation
To motivate our analysis of learning effects, Fig. 2 shows the raw data for (a) payoffs
and (b) per-round contributions respectively for the investment game as a function of

3SW only included experiments whever over 90% of the overall contributions at at least 50% of each individ-
ual contribution were made by human players as opposed to a default action due to a player dropping out.
Since we are interested in learning effects of the human player we included all experiments in this work.
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Fig. 2. Raw data for investment game: average cumulative payoff by experience (left); and average per-
round contribution by experience (right)

experience4. Fig. 2 suggests two main results: first, that payoffs in general increase
with experience; and second, that contributions generally decline up until some point,
at which they increase again. Although the raw data provide a useful starting point,
there are several reasons to mistrust these visual impressions. First, as noted above
SW conducted several sets of experiments in succession, including some (especially
the dummy experiments, but also to a smaller extent the changes of view) with sig-
nificant treatment effects. Critically, while SW were careful to randomize assignment
of players to treatments within each set of experiments, no such randomization was
applied across sets. Hence some of the apparent variations with experience are in fact
treatment effects. Second, the extreme heterogeneity of experience apparent in Fig. 1
(bottom right) results in many more observations of some players (those with experi-
ence) than of others, hence estimates of individual learning must disambiguate within-
individual learning from selection effects—namely that players who voluntarily play
many games may be systematically different from those who play few games, either
because they are different at the outset, or because success in the game itself affects
attrition. Finally, individual experiments varied considerably in terms of initial levels
of cooperation. Because these random initial differences are known to persist through-
out the game, and because they may vary in ways that correlate with experience, we
must separately account for experiment-level effects.

To address these issues, we adopt a multi-level modeling approach5 [Gelman and
Hill 2007]. Specifically, we fit models of the following form:

yij = αij + β1xij + β2gij + β3cij + β4vij + ti + ej (1)

where the dependent variable yij represents either payoff (cumulative over the entire
game) or average contribution of player i for game j; xij is the experience of player i in
game j, gij represents the different graph structures, cij represents fixed effects for the
different treatment conditions, ti is a random effect for the players, and ej is a random
effect for the individual experiment. The coefficients for key variables can be seen in
Table I; the best-fitting parameters for the full model can be found in the Appendix.

Coefficients for multilevel models can be hard to interpret directly, both on account
of the complexity of the model and also differences in scales corresponding to the co-
variates. Having estimated Eqn. 1, therefore, we can use the fitted model to generate
model-adjusted values for payoffs and contributions. That is, for each observation in

4By experience, we mean the experience that player i had at the time of playing experiment j. Thus expe-
rience is to be distinguished from maximum experience which is the experience that player i accumulates
over their entire participation in the investment game.
5Multilevel models are also known as hierarchical linear models, mixed models, or random-effects models
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Table I. Coefficients of Models fit to Investment Game Data

Payoff Contribution Contribution Contribution
(Max Experience) (by round)

(Intercept) 75.84∗∗∗ 2.59∗∗∗ 2.90∗∗∗ −1.45
[45.25; 106.46] [0.49; 4.72] [0.84; 4.99] [−3.91; 1.01]

experience 0.15∗∗∗ −0.01∗∗∗ −0.02∗∗∗

[0.05; 0.25] [−0.02; −0.01] [−0.02; −0.01]
max experience 0.00

[−0.02; 0.01]
round −0.37∗∗∗

[−0.35; −0.39]
experience:round −0.0018∗∗∗

[−0.0012; −0.0023]
∗∗∗p < 0.001
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Fig. 3. Model-adjusted data for average cumulative payoff as a function of experience (left), and average
per-round contribution as function of experience (right)

our data, we set the fixed effects to their observed value, and set the random effects
to zero. This procedure preserves the relative frequency of the different treatments,
but smooths out some of the variance arising from individual player idiosyncrasies
and game effects. Fig. 3 shows these model-adjusted fits, which are analogous to those
in Fig. 2, but are noticeably smoother6. Nevertheless, the overall impression from the
raw data remains: payoffs increase with experience and contributions decrease; thus
players are clearly “learning” both in the sense that they are performing better than in-
experienced players, and also that their contributions are decreasing, consistent with
“rational” interpretation of the incomplete information hypothesis.

Although our inclusion of a random effect for individual players should account for
biases introduced by selection effects (e.g. that inherently less-generous players are
more successful and also are more motivated to play many games) we also address the
selection issue directly by fitting the analogous model to Eqn 1, but with maximum
experience (i.e. the experience that player i in experiment j eventually attains) replac-
ing experience as the fixed effect. Interestingly, column 3 of Table I shows that the
coefficient for maximum experience is close to zero and not significant, indicating that
selection is not a significant effect.

6We note that our simulation procedure preserves the order in which the various values of the fixed effects
appear in the raw data, hence some of the fluctuations associated with distinct sets of experiments remain
in the model-adjusted fits.
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3.3. Endgame effect
Aside from the effects of learning on average levels of cooperation, we note that Kreps
et al. also speculated that learning effects may manifest themselves differently at dif-
ferent stages of the game. Specifically, Kreps et al. noted an “endgame effect” in which
cooperation ceases as the end of the game approaches–behavior that is suggestive of
strategic cooperation rather than cooperation arising out of “true” altruism. As Selten
and Stoecker [1986] also noted, if players are in fact rational, one would expect this
endgame effect to creep forward over time, as players iteratively attempt to preempt
one other in defecting, leading eventually to total unraveling of cooperation just as
predicted by the naive theory.

To study end-game effects, we fit the following multilevel model:

yij = αij + β1xij + β2rij + β3xijrij + β4gij + β5cij + β6vij + ti + ej (2)

where yij is an indicator variable for whether the contribution of player i in round r
of game j was greater than 5, and rij is a fixed effect for round. Note that unlike in
Eqn 1, here we fit a logistic model, where we first dichotomize contribution as greater
than or less than 5 points7.

Column 4 of Table I shows that the main effects of experience and round are both
negative and highly significant. More importantly, however, the interaction effect be-
tween experience and round is negative and also highly significant, indicating that the
decrease in cooperation with experience is more pronounced in later rounds than in
earlier, consistent with the endgame effect creeping forward. Fig. 4 shows this inter-
action effect in two ways: first, Fig. 4(a) shows model-adjusted per-round contribution
as a function of experience, broken down by round; and second, Fig. 4(b) shows model-
adjusted per-round contribution as a function of round, broken down by experience. In
particular, Fig. 4(b) shows both that initial cooperation decreases with experience, and
also that cooperation decreases more rapidly as the game progresses, corresponding to
an encroaching endgame effect.

To sum up, our analysis supports the view advanced by Kreps et al. that players
in repeated games of cooperation are in fact rational, and are cooperating at least in
part because they believe that other players may not be. In this view, as the players
gain experience they become increasingly aware of the other players’ “true” nature and
respond (a) by cooperating less overall, and (b) by reducing their contributions more
rapidly as the game progresses, as we indeed see. As striking as these effects appear,
however, we also note that the timescales involved are rather large: for example, the
decrease in initial cooperation visible in Fig. 4(a) from approximately 0.6 to approx-
imately 0.3 takes place over 110 games. Extrapolating our model fits, we estimate a
lower bound on the number of games required for cooperation to disappear entirely at
over 200 games8. Cooperation, in other words, may indeed disappear in the long run,
but the long run is very long. As we explain in the next two sections, moreover, even
slight changes to the structure of the game can prolong cooperation indefinitely.

7We use a logistic model in large part because both subsequent experiments involve binary outcome vari-
ables, hence for the per-round analysis logistic models are required. However, a logistic model is also not
inappropriate for the investment game as the vast majority of contributions are concentrated around ei-
ther 10 or 0, with very little mass in the middle [Suri and Watts 2011], hence converting the real-valued
contribution into a binary outcome results in very little loss of detail.
8We acknowledge that extrapolation out of sample is an inherently unreliable procedure. In particular,
the relationship between initial contribution and experience is likely to become increasingly nonlinear as it
approaches zero. Hence our estimate is at best a loose lower bound with unknown uncertainty. Nevertheless,
it suffices to make the point that cooperation likely persists for hundreds of games.
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Fig. 4. (Best viewed in color) Model-adjusted data for per-round contribution as a function of experience
broken down by round (left), and as a function of round broken down by experience (right)

4. COOPERATION IN DYNAMIC NETWORKS
Wang, Suri, and Watts [2012] conducted a series of online human subjects experiments
in which groups of 24 participants played an iterated Prisoner’s Dilemma (PD), where
in addition to choosing their action each round—cooperate or defect—they also were
given the opportunity to update their interaction partners at some specified rate, which
was varied across experimental conditions. All games comprised 12 “strategy update”
rounds during which every player could update their strategy: cooperate (C) or de-
fect (D). Consistent with standard PD conditions, a cooperator received R points when
interacting with another cooperator, and S points when interacting with a defector,
while a defector received T points when interacting with a cooperator and P points
when interacting with another defector, where T > R > P > S and T + S < 2R. In
addition, after every r strategy update rounds, players entered a “partner updating”
turn in which they were permitted to make up to k partner updates. By adjusting r
and k Wang et al. [2012] explored a wide range of relative updating rates, from one op-
portunity every several strategy update rounds to several opportunities every round.
A single update comprised either severing a link with an existing partner or proposing
a link to a new partner, where importantly, players could choose the partner to either
sever or propose a link to. After each partner updating turn was completed, the net-
work of partners was updated to reflect severed and accepted links, and a new strategy
update round commenced.

4.1. Experiment and Data
Wang et al. [2012] conducted two sets of experiments in succession—first, with payoffs
T1 = 7, R1 = 4, P1 = 1, S1 = −1; and second, with payoffs T1 = 7, R1 = 4, P1 = −1, S1 =
−5—totaling 109 experiments with 114 unique players. Although both sets of payoffs
satisfy the conditions for a PD (T > R > P > S and T+S < 2R), they differ with respect
to the relative cost and benefit of making and breaking ties. Specifically, a cooperator
facing the choice of breaking a tie with a currently defecting partner and forming a
new tie with another cooperator will prefer the latter in payoffs 1 and the former in
payoffs 2. As a consequence, Wang et al. [2012] found that in payoffs 1, players tended
to retain ties with defectors even though these ties were costly, preferring to use their
updates to create additional ties with other cooperators, whereas in payoffs 2 they were
more likely to punish defecting partners by severing ties. As Fig.5(c,d) shows, rewiring
led to large and significant increases in cooperation (relative to the static controls) for
both sets of payoffs. However, payoffs 2 not only led to significantly higher cooperation
levels initially, but also maintained cooperation for longer.
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Fig. 5. (Best viewed in color) Clockwise from top left: screen shot of Social Networking Game; histogram of
player experience; probability of cooperating by round for payoffs 2; probability of cooperating by round for
payoffs 1.

4.2. Overall cooperation
Fig. 6 shows the raw data for average player payoff and probability of cooperation (i.e.
corresponding to Fig.2 for the investment game), where we have separated out payoffs
1 and 2—treating them, in effect, as two distinct experiments9. For similar reasons,
we also omit the data from the control conditions, fitting only the treatments in which
rewiring occurs. Consistent with Wang et al. [2012], Fig. 6 shows that both cooperation
and payoffs are higher in the dynamic than in the static conditions, and that the effects
are larger for payoffs 2 than payoffs 1.

Unlike for the investment game, the raw data does not show any clear trends as
a function of experience. As before, however, the raw data is potentially confounded
by treatment effects, individual differences, and variability from game to game. To

9As is clear from Fig. 5, the behavior of players differed dramatically between payoffs 1 and 2, which were
also conducted in non-overlapping batches; hence it makes sense to treat them as distinct experiments. Be-
cause there was considerable overlap between the panels for both games, however, treating them separately
introduces an additional complication for the second payoffs—namely that “experience” is no longer uniquely
defined. One possibility is to measure total experience (i.e. in both payoffs 1 and 2), but this choice effectively
treats n games of payoffs 1 and m games of payoffs 2 as identical to n + m games of payoff 2, which, given
the differences between the two payoff schemes, may be misleading. A second possibility is to ignore players’
experience with payoffs 1, effectively counting them as “fresh” when they play their first game with payoffs
2. This assumption, however, would conflate truly inexperienced players with players who have extensive
experience with a closely related game—also likely misleading. Although there is no perfect solution to this
problem, we adopt the following compromise: We set experience with payoff 2 as the fixed effect of interest,
but also include a random effect for experience in payoff 1.
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Fig. 6. Raw data for social networking game with payoffs 1 (top row) and payoffs 2 (bottom row). Left
column represents average cumulative payoff and right column is average probability of cooperating, both
as function of experience.

account for these confounding effects, we again fit multilevel models of the form:

yij = αij + β1xij + β2gij + β3sij + β4wij + β5sijwij + ui + ej (3)

for payoffs 1, where the dependent variable yij represents either payoff (cumulative
over the entire game) or probability of cooperating for player i in game j; xij is the
experience (or maximum experience) of player i in game j, gij represents the different
graph structures, sij represents fixed effects for the different treatment conditions, ui
is a random effect for the players, and ej is a random effect for the individual experi-
ment. For payoffs 2, all initial graph structures were the same, and all players had a
rewiring opportunity every round, so we fit models of the form:

yijk = αijk + β1xijk + β2wijk + ui + ej +mk (4)

For payoffs 2, some of the players had previously played with payoffs 1, so we in-
cluded a random effect mk for the number of games the individual had played with
payoffs 1. Table II shows the estimated coefficients, and Fig. 7 shows the corresponding
model-adjusted data for payoff and cooperation, for both sets of payoffs. Payoffs 1 (top
row) are similar to the analogous results for the investment game (Fig. 3), in that pay-
offs show a gradual increase with learning while cooperation slowly decreases. Given
the differences between the two games, and the overall higher rates of cooperation in
the social networking games, this similarity is somewhat surprising, and suggests that
learning effects in games of cooperation generalize somewhat beyond the specifics of
any one game. The results for Payoffs 2 (bottom row), however, caution that any such
generalizability is limited. Not only do payoffs 2 lead to higher overall rates of cooper-
ation than payoffs 1, that is, but the direction of the learning effect is reversed: players
are clearly becoming more cooperative with experience, not less.
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Table II. Coefficients of Models Fit to Social Networking Game: Payoffs 1

Payoff Coop. Likelihood Coop. Likelihood Coop. Likelihood
(Max Experience) (by round)

(Intercept) 274.28∗∗∗ 0.61∗∗∗ 0.55∗∗∗ 4.25∗∗∗

[247.89; 300.90] [0.56; 0.66] [0.48; 0.62] [3.72; 4.77]
experience 0.42∗∗∗ 0.00∗∗∗ 0.04∗∗∗

[0.00; 0.80] [0.00; 0.00] [0.03; 0.05]
max experience 0.00

[0.00; 0.00]
round −0.50∗∗∗

[−0.53; −0.48]
experience:round −0.0011∗∗∗

[−0.001; −0.0012]
∗∗∗p < 0.001
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Fig. 7. Model-adjusted data for social networking game with payoffs 1 (top row) and payoffs 2 (bottom row).
Left column represents average cumulative payoff and right column is average probability of cooperating,
both as function of experience.

4.3. Endgame Effect
Another striking difference between the social networking game and the investment
game, clearly apparent in Fig. 5(c) and (d), is that the endgame effect is much sharper
in the social networking game; moreover, payoffs 1 and 2 also differ substantially in the
timing of the end-game effect, with cooperation in payoffs 1 plunging after about round
5 while persisting until at least round 10 in payoffs 2. To investigate the evolution of
these endgame effects in the long run, we again fit multilevel logistic regression models
of the following form:

yij = αij + β1xij + β2rij + β3xijrij + β4gij + β5sij + β6wij + β7sijwij + ui + ej (5)
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Table III. Coefficients of Models Fit to Social Networking Game: Payoffs 1

Payoff Coop. Likelihood Coop. Likelihood Coop. Likelihood
(Max Experience) (by round)

(Intercept) 372.44∗ 0.80∗ 0.79∗ 3.3∗∗∗

[291.21; 453.24] [0.73; 0.87] [0.72; 0.87] [1.68; 4.92]
experience 0.61 0.00 0.19∗

[−0.81; 2.06] [0.00; 0.00] [0.14; 0.25]
max experience 0.00

[0.00; 0.00]
round −0.3∗∗∗

[−0.16; −0.45]
experience:round −0.019∗∗∗

[−0.014; −0.024]
∗∗∗p < 0.001

for payoffs 1 where yij is an indicator variable for whether player i cooperated in round
r of game j, and rij is a fixed effect for round. Again, this model had to be modified for
payoffs 2, taking the form:

yijk = αijk + β1xijk + β2rijk + β3xijkrijk + β4wijk + ui + ej +mk (6)

Column 4 of Tables II and III shows the estimated coefficients for Eqn 5 and 6 re-
spectively. Fig. 8 shows the corresponding model-adjusted data, and reveals both sim-
ilarities and differences with Fig. 4. On the one hand, both display strong interaction
effects between experience and round, consistent with the endgame effect increasing
in strength as players gain experience. On the other hand, whereas in the invest-
ment game cooperation decreased with experience at all stages of the game, here we
find initial cooperation increases with experience in both payoffs 1 and 2. Players in
other words, appear to be learning to cooperate more at the start of the game and
then exploiting the ties they gain as cooperators by switching to defection as the game
progresses, where the switch becomes increasingly sharp with experience. Finally, the
direction in which the endgame effect moves differs depending on the payoffs: for pay-
offs 1, it clearly creeps forward, consistent with the investment game, converging on
round 5; but for payoffs 2 it recedes with experience, converging on round 10.

5. COLLABORATIVE LEARNING EXPERIMENT
Mason and Watts [2012] (hereafter MW) conducted an experiment, “Wildcat Wells,” in
which players were tasked with exploring a realistic-looking two-dimensional desert
map in search of hidden “oil fields.” The players had 15 rounds to explore the map,
either by entering grid coordinates by hand, or by clicking directly on the map (see
Fig. 9(a)). On each round after the first, players were shown the history of their
searched locations and payoffs, as well as the history of searched locations and payoffs
of three collaborators. In choosing their next location, therefore, players repeatedly
faced a choice between copying the best current score of their neighbors or exploring
new terrain on their own. MW showed that the decision to explore was beneficial to
the collective performance but copying improved the score of the copier, hence players
effectively faced a repeated social dilemma in the explore-copy decision [Mason and
Watts 2012]10. Supporting this interpretation, Fig. 9(c) shows that, players mostly ex-

10The fitness landscape comprised two components: a main peak and noisy background. Once a neighbor had
found the main peak, an experienced player might recognize that further exploration was pointless, hence
removing the dilemma. For this reason, we restrict attention here to rounds on which the focal player’s
neighbors had not found the peak.
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Fig. 8. (Best viewed in color) Social Networking Game payoffs 1 (top row) and payoffs 2 (bottom row): model
adjusted fits for per-round contribution as a function of experience, broken down by round (left column), and
as a function of round, broken down by experience (right column).

plored new locations in early rounds while in later rounds they were more likely to
copy their most successful neighbor.

5.1. Experiment and Data
Each experimental session comprised 8 games corresponding to each of the network
topologies, so players experienced each topology exactly once in random order. Players
were randomly assigned to unique positions in one of 8 network topologies, where each
player’s collaborators for that game were his or her immediate neighbors in that net-
work. All networks comprised n = 16 nodes, each with k = 3 neighbors, but differed
with respect to four commonly-studied metrics that have been posited to affect infor-
mation flow in networks[?]. In this manner, MW conducted 232 networked games over
29 sessions, as well as a series of 24 baseline experiments, in which groups of 16 in-
dividuals searched the same landscape independently (i.e. with no network neighbors
and no sharing of information), resulting in a total of 256 experiments with 130 unique
individuals.

5.2. Average payoffs and cooperation
As with the previous two experiments, we first show the raw data (Fig. 10) and then
show the model-adjusted data (Fig. 11) based on coefficients estimated from the fol-
lowing multilevel model:

yijk = αijk + β1xijk + β2gijk + ui + tj + ek (7)

where as before the dependent variable yijk represents either payoff (cumulative over
the entire game) or the probability of exploring for player i in trial j of game k; xijk
is the experience of player i in game j, gijk represents the different graph structures,
ui is a random effect for the players, tj is the trial within the experiment, and ek is a
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Fig. 9. Clockwise from top left: screen shot of Wildcat Wells; networks studied in the experiment; histogram
of player experience; probability of exploring (cooperating) as a function of round.
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Fig. 10. Wildcat Wells, raw data for average cumulative payoff as a function of experience (left), average
per-round probability of exploring as function of experience (right)

random effect for the individual experiment. The coefficients estimated from Eq. 7 are
given in the first two columns of Table IV.

Focusing on Fig. 11 (the model-adjusted fits), we see a pattern that is most similar
to payoffs 2 of the social networking game, in that payoffs decrease with experience
and cooperation (exploration) increases. The magnitude of the coefficients, however, is
consistently smaller than in either of the previous experiments, suggesting that the
extra complexity of Wildcat Wells made it a more difficult game to “learn.”

5.3. Endgame Effect
Considering now the endgame effects, we again fit multilevel logistic models of the
form

yijk = αijk + β1xijk + β2rijk + β3xijkrijk + β4gijk + ui + tj + ek (8)
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Table IV. Coefficients of Model Fit to Wildcat Wells Data

Payoff Prob. Exploring Prob. Exploring Prob. Exploring
(Max Experience) (by round)

(Intercept) 512.33∗∗∗ 0.72∗∗∗ 0.72∗∗∗ 2.63∗∗∗

[482.84; 542.00] [0.68; 0.76] [0.67; 0.78] [2.31; 2.95]
experience −0.08 0.00 0.014∗∗∗

[−0.31; 0.15] [0.00; 0.00] [0.011; 0.016]
max experience 0.00

[0.00; 0.00]
round −0.17∗∗∗

[−0.16; −0.18]
experience:round −0.0011∗∗∗

[−0.001; −0.0013]
∗∗∗p < 0.001
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Fig. 11. Wildcat Wells, model adjusted fits for average cumulative payoff as a function of experience (left),
average per-round probability of exploring as function of experience (right)

where yijk is an indicator variable for whether the player i in round r of trial j in game
k copied one of her neighbors, and rijk is a fixed effect for round. The coefficients for
Eq. 8 are given in column 4 of Table IV and the model adjusted data for per-round
probability of exploring as a function of experience (broken down by round) and round
(broken down by experience) are shown in Fig. 12. Similar to Fig. 11, Fig. 12 suggests
that Wildcat Wells is more similar to the Social Networking Game than to the Invest-
ment Game, in that initial cooperation is increasing while the endgame effect becomes
increasingly sharp, where the shape of the curves are roughly intermediate between
payoffs 1 and 2 of the SNG.

These results are somewhat surprising, as the tradeoff between exploring and copy-
ing in Wildcat Wells seems at first glance more similar to the investment game than
to the social networking game, where the capability to rewire links can be thought of
as a form of punishment for defection. No such punishment mechanism is available to
players in wildcat wells, which is therefore more like a classic repeated public goods
game, aka the investment game. Clearly, however, wildcat wells is not framed explic-
itly as a game of cooperation, nor is the social dilemma inherent in payoffs necessarily
obvious to the players. Even though they are, in effect, playing a game cooperation,
that is, they may not realize it, and this confusion may affect their behavior. Although
not surprising, it is nonetheless interesting that this confusion appears to persist es-
sentially indefinitely. Given that real-world “games” of cooperation are also unlikely to
be presented in terms of explicit payoffs, as they are in standard experimental designs,
the learning effects—or lack thereof—in the wildcat wells game may more closely re-
semble real life.
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Fig. 12. (Best viewed in color) Wildcat Wells model adjusted fits for per-round probability of exploring
broken as a function of experience, broken down by round (left); and as a function of round, broken down by
experience (right)

6. DISCUSSION
To summarize, we have analyzed data from three distinct cooperation games with
players with heterogeneous experience levels: a linear public goods game, a multi-
player prisoner’s dilemma with endogenous partner selection and a collaborative ex-
plore/exploit game. Despite the variety in game type we see learning effects across
all three games. Specifically, we find that as people gain experience, they behave in a
more extreme manner, in the sense that where the contribution curves are concave the
curve becomes more concave, and where they are convex they become more convex.
Furthermore, across all three games there is an interaction effect between experience
and round. As people get more experience, they learn to behave more selfishly in the
last round; thus even where we see initial increases in cooperation, as we do in the
social networking and wildcat game, it is likely strategic and not altruistic.

In light of the incomplete learning model of Kreps et al. [1982], in other words, our
findings are overall consistent with the “rational” interpretation offered by Andreoni
and Miller [1993]–namely that over time, the players’ rationality will become common
knowledge and they will “learn” to act selfishly. The Investment Game analysis shows
this result most clearly, with players clearly converging towards the equilibrium strat-
egy predicted by the standard backward induction argument. Even for the investment
game, however, we found that it would take a long time, at least 200 games, for players
to actually reach the equilibrium. An interesting challenge for future theoretical work,
therefore, would be to explain not only the equilibrium strategy, but also the timescale
required for players to converge to it. Our results for the social networking game and
wildcat wells also present interesting challenges for theory: both displayed significant
learning effects, but to our knowledge there is not a well developed of theory of learning
in these settings. Explaining the direction and type of learning effects, and how they
depend on particular details of the games, therefore stands as a challenge for future
theoretical work.

Our work also raises some methodological concerns for web-based experiments that
rely on “greedy” designs [Salganik and Levy 2012], in which most subjects participate
in only one experiment and some subjects participate in many. On the one hand, these
designs are useful because they extract the maximum amount of information from
any given number of subjects—an advantage when any given experiment may have
to compete for scarce user attention with potentially many other tasks. On the other
hand, they raise the concern that any conclusions will be biased by the behavior of a
few highly active and potentially non-representative individuals [Salganik and Levy
2012]. Although we have adjusted for this bias using multilevel models, our consis-
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tent finding that long-run learning does occur nevertheless suggests that care must be
taken when designing these types of experiments. In particular, it is important for ex-
perimenters to randomize over all of their treatment conditions, in order not to confuse
treatment with learning effects. Fortunately, our results also suggest that another pos-
sible problem–namely selection effects—does not appear to be serious, although more
work is needed to verify this result across other types of games.
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A. APPENDIX
Tables V-VIII give coefficients for the full models (equations 1-8) given in the text.
The extra coefficients refer to the various fixed effects arising from different network
topologies and experimental treatments (see descriptions of experiments, main text).
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Table V. Coefficients of Models fit to Investment Game Data

Payoff Contribution Contribution Contribution
(Max Experience) (by round)

(Intercept) 75.84∗∗∗ 2.59∗∗∗ 2.90∗∗∗ −1.45
[45.25; 106.46] [0.49; 4.72] [0.84; 4.99] [−3.91; 1.01]

experience 0.15∗∗∗ −0.01∗∗∗ −0.02∗∗∗

[0.05; 0.25] [−0.02; −0.01] [−0.02; −0.01]
max experience 0.00

[−0.02; 0.01]
round −0.37∗∗∗

[−0.35; −0.39]
experience:round −0.0018∗∗∗

[−0.0012; −0.0023]
graph id1 k 8 7.39 −0.09 −0.03 0.32

[−26.79; 41.66] [−2.43; 2.24] [−2.32; 2.26] [−2.21; 2.84]
graph id10 k 6 87.72∗∗∗ 2.59 2.39 2.49

[47.38; 128.04] [−0.19; 5.34] [−0.31; 5.09] [−0.66; 5.64]
graph id11 k 6 113.90∗∗∗ 1.58 1.28 1.97

[77.91; 149.86] [−0.91; 4.03] [−1.12; 3.68] [−0.8; 4.73]
graph id2 k 4 11.90 0.27 0.27 0.47

[−19.58; 43.42] [−1.88; 2.42] [−1.84; 2.37] [−1.87; 2.81]
graph id2 k 4 joined 9.39 −0.46 −0.49 −0.26

[−22.06; 40.93] [−2.61; 1.69] [−2.59; 1.62] [−2.6; 2.09]
graph id4 k 6 44.92∗∗∗ −0.18 −0.40 0.23

[14.17; 75.65] [−2.30; 1.92] [−2.46; 1.66] [−2.09; 2.56]
graph id4 k 6 cycle 44.59∗∗∗ −0.06 −0.46 0.67

[14.36; 74.76] [−2.16; 2.00] [−2.48; 1.56] [−1.61; 2.94]
graph id4 k 6 pair 47.20∗∗∗ 0.27 −0.07 0.78

[16.51; 77.86] [−1.85; 2.37] [−2.13; 1.98] [−1.53; 3.1]
graph id4 k 6 random 45.96∗∗∗ −0.19 −0.43 0.24

[15.43; 76.46] [−2.30; 1.89] [−2.48; 1.61] [−2.06; 2.55]
graph id4 k 6 random reg 46.60∗∗∗ 0.10 −0.18 0.61

[16.15; 77.02] [−2.01; 2.18] [−2.22; 1.86] [−1.69; 2.91]
graph id8 k 6 97.05∗∗∗ 2.27 2.05 2.22

[56.35; 137.72] [−0.53; 5.04] [−0.67; 4.75] [−0.94; 5.38]
graph idcube 8.04 −0.48 −0.48 −0.21

[−23.41; 39.60] [−2.63; 1.67] [−2.58; 1.63] [−2.56; 2.14]
graph idk 4 12.42 1.05 0.88 1.43

[−18.08; 42.89] [−1.06; 3.14] [−1.18; 2.94] [−0.85; 3.71]
condition10:cover 59.14∗∗∗ 2.38∗∗∗ 2.40∗∗∗ 1.84∗∗∗

[49.55; 68.74] [1.74; 3.03] [1.77; 3.03] [1.11; 2.58]
condition10:neigbhor 29.76∗∗∗ 1.32∗∗∗ 0.96∗∗∗ 1.67∗∗∗

[20.53; 39.00] [0.66; 1.94] [0.36; 1.54] [0.98; 2.36]
condition10:single 8.92 0.35 0.48 −0.18

[−8.48; 26.45] [−0.82; 1.54] [−0.67; 1.63] [−1.54; 1.18]
conditionNone:human 28.31∗∗∗ 1.50∗∗∗ 1.46∗∗∗ 1.31∗∗∗

[20.67; 35.97] [0.98; 2.01] [0.96; 1.96] [0.72; 1.9]
view1.5 2.47 0.82∗∗∗ 0.59 1.086∗∗

[−7.36; 12.28] [0.14; 1.48] [−0.05; 1.23] [0.33; 1.84]
view2 17.28∗∗∗ 1.14∗∗∗ 0.81∗∗∗ 1.74∗∗∗

[7.58; 26.85] [0.37; 1.84] [0.10; 1.50] [0.98; 2.5]
AIC 34945.72 15598.36 15609.97
BIC 35093.51 15746.15 15757.76
Log Likelihood -17448.86 -7775.18 -7780.98
Deviance 34897.72 15550.36 15561.97
Num. obs. 3491 3491 3491
Num. groups: turk id 315 315 315
Num. groups: exp id 206 206 206
Variance: turk id.(Intercept) 128.02 4.70 4.72
Variance: exp id.(Intercept) 172.44 0.86 0.80
Variance: Residual 1182.84 3.93 3.96
∗ 0 outside the confidence interval
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Table VI. Coefficients of Models Fit to Social Networking Game: Payoffs 1

Payoff Coop. Likelihood Coop. Likelihood Coop. Likelihood
(Max Experience) (by round)

(Intercept) 274.28∗∗∗ 0.61∗∗∗ 0.55∗∗∗ 4.25∗∗∗

[247.89; 300.90] [0.56; 0.66] [0.48; 0.62] [3.72; 4.77]
experience 0.42∗∗∗ 0.00∗∗∗ 0.04∗∗∗

[0.00; 0.80] [0.00; 0.00] [0.03; 0.05]
max experience 0.00

[0.00; 0.00]
round −0.50∗∗∗

[−0.53; −0.48]
experience:round −0.0011∗∗∗

[−0.001; −0.0012]
graph id4 k 6 random reg 7.34 0.00 0.00 0.01

[−9.65; 24.37] [−0.02; 0.02] [−0.03; 0.03] [−0.22; 0.24]
fre strategy3 −121.60∗∗∗ −0.06∗∗ −0.05 −0.62∗∗

[−155.68; −87.56] [−0.11; −0.02] [−0.11; 0.01] [−1.08;−0.16]
fre strategy6 −198.34∗∗∗ −0.35∗∗∗ −0.36∗∗∗ −3.56∗∗∗

[−233.38; −163.28] [−0.40; −0.31] [−0.42; −0.30] [−4.04;−3.08]
fre rewire3 194.12∗∗∗ 0.00 0.00 −0.02

[157.90; 230.36] [−0.05; 0.05] [−0.06; 0.06] [−0.51; 0.47]
fre rewire5 264.81∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.82∗∗∗

[230.77; 298.84] [0.04; 0.13] [0.03; 0.14] [0.36; 1.29]
fre strategy3:fre rewire3 −91.11∗∗∗ 0.07∗ 0.06 0.7∗

[−142.08; −40.09] [0.00; 0.14] [−0.03; 0.15] [0.01; 1.39]
fre strategy6:fre rewire3 −155.42∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 1.5∗∗∗

[−205.87; −104.98] [0.07; 0.21] [0.05; 0.23] [0.81; 2.18]
fre strategy3:fre rewire5 −104.55∗∗∗ −0.03 −0.04 −0.32

[−153.90; −55.15] [−0.10; 0.04] [−0.12; 0.05] [−0.99; 0.35]
fre strategy6:fre rewire5 −201.01∗∗∗ 0.12∗∗∗ 0.12∗∗ 1.26∗∗∗

[−251.87; −150.13] [0.05; 0.18] [0.03; 0.20] [0.57; 1.95]
AIC 23433.15 -1408.74 -1355.66
BIC 23511.84 -1330.05 -1276.97
Log Likelihood -11702.57 718.37 691.83
Deviance 23405.15 -1436.74 -1383.66
Num. obs. 2040 2040 2040
Num. groups: turkid 109 109 109
Num. groups: expid 85 85 85
Variance: turkid.(Intercept) 1381.80 0.03 0.03
Variance: expid.(Intercept) 1535.68 0.00 0.00
Variance: Residual 4953.09 0.02 0.02
∗ 0 outside the confidence interval

ACM Journal Name, Vol. X, No. X, Article X, Publication date: February 2012.



App–4 Mason et al.

Table VII. Coefficients of Models Fit to Social Networking Game: Payoffs 1

Payoff Coop. Likelihood Coop. Likelihood Coop. Likelihood
(Max Experience) (by round)

(Intercept) 372.44∗∗∗ 0.80∗∗∗ 0.79∗∗∗ 3.3∗∗∗

[291.21; 453.24] [0.73; 0.87] [0.72; 0.87] [1.68; 4.92]
experience 0.61 0.00 0.19∗∗∗

[−0.81; 2.06] [0.00; 0.00] [0.14; 0.25]
max experience 0.00

[0.00; 0.00]
round −0.3∗∗∗

[−0.16; −0.45]
experience:round −0.019∗∗∗

[−0.014; −0.024]
fre rewire5 302.38∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 1.55∗∗∗

[214.58; 390.20] [0.07; 0.12] [0.07; 0.12] [1.12; 1.98]
fre rewire23 375.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 1.19∗∗∗

[292.71; 457.31] [0.05; 0.10] [0.05; 0.10] [0.79; 1.59]
AIC 2792.20 -461.42 -461.49
BIC 2820.04 -433.57 -433.65
Log Likelihood -1388.10 238.71 238.75
Deviance 2776.20 -477.42 -477.49
Num. obs. 240 240 240
Num. groups: turk id 53 53 53
Num. groups: max experience1 35 35 35
Num. groups: expid 10 10 10
Variance: turkid.(Intercept) 0.00 0.00 0.00
Variance: max experience1.(Intercept) 7071.50 0.01 0.01
Variance: expid.(Intercept) 3151.99 0.00 0.00
Variance: Residual 4599.19 0.00 0.00
∗ 0 outside the confidence interval
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Table VIII. Coefficients of Model Fit to Wildcat Wells Data

Payoff Prob. Exploring Prob. Exploring Prob. Exploring
(Max Experience) (by round)

(Intercept) 512.33∗∗∗ 0.72∗∗∗ 0.72∗∗∗ 2.63∗∗∗

[482.84; 542.00] [0.68; 0.76] [0.67; 0.78] [2.31; 2.95]
experience −0.08 0.00 0.014∗∗∗

[−0.31; 0.15] [0.00; 0.00] [0.011; 0.016]
max experience 0.00

[0.00; 0.00]
round −0.17∗∗∗

[−0.16; −0.18]
experience:round −0.0011∗∗∗

[−0.001; −0.0013]
graphid161 −29.41∗∗∗ 0.00 0.00 −0.07

[−46.01; −12.80] [−0.02; 0.03] [−0.02; 0.03] [−0.15; 0.01]
graphid162 −50.24∗∗∗ 0.03∗ 0.03∗ 0.14∗∗∗

[−66.82; −33.64] [0.01; 0.05] [0.01; 0.05] [0.06; 0.23]
graphid163 −34.33∗∗∗ 0.02∗ 0.02∗ 0.07

[−50.86; −17.79] [0.00; 0.04] [0.00; 0.04] [−0.01; 0.15]
graphid164 −27.62∗∗∗ 0.01 0.01 0.12∗∗

[−44.24; −10.96] [−0.01; 0.03] [−0.01; 0.03] [0.04; 0.2]
graphid165 −23.66∗∗∗ 0.01 0.01 0.1∗

[−40.27; −7.03] [−0.01; 0.03] [−0.01; 0.03] [0.02; 0.19]
graphid166 −57.72∗∗∗ 0.02 0.02 0.02

[−74.30; −41.10] [−0.01; 0.04] [−0.01; 0.04] [−0.06; 0.1]
graphid167 −51.55∗∗∗ 0.02 0.02 0.07

[−68.12; −34.95] [0.00; 0.04] [0.00; 0.04] [−0.02; 0.15]
AIC 78077.33 -1327.04 -1327.87
BIC 78164.37 -1240.00 -1240.83
Log Likelihood -39025.66 676.52 676.93
Deviance 78051.33 -1353.04 -1353.87
Num. obs. 5975 5975 5975
Num. groups: uid 130 130 130
Num. groups: expid 51 51 51
Num. groups: trial 8 8 8
Variance: uid.(Intercept) 2485.13 0.03 0.03
Variance: expid.(Intercept) 6306.03 0.00 0.00
Variance: trial.(Intercept) 260.98 0.00 0.00
Variance: Residual 26213.38 0.04 0.04
∗ 0 outside the confidence interval
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