Uncertainty Traps

Pablo Fajgelbaum¹ Edouard Schaal² Mathieu Taschereau-Dumouchel³

¹UCLA ²New York University

³Wharton School University of Pennsylvania

September 4-5, 2014 University of Cambridge Aggregate Demand, the Labor Market and Macroeconomic Policy • Some recessions are particularly persistent

- Slow recoveries of 1990-91, 2001
- Persistence is a challenge for standard models of business cycles
 - Measures of standard shocks typically recover quickly
 - TFP, financial shocks, volatility...
 - Need strong propagation channel to transform short-lived shocks into long-lasting recessions
- We develop a business cycles theory of endogenous uncertainty
 - Large evidence of heightened uncertainty in 2007-2012 (Bloom et al., 2012; Ludvigson et al., 2013)

Irreversible investment

• Uncertainty traps:

 Self-reinforcing episodes of high uncertainty and low economic activity

- Start with a stylized model
 - Isolate how key forces interact to create uncertainty traps
 - Complementarity between economic activity and information strong enough to sustain multiple regimes
 - Establish conditions for their existence, welfare implications
- Extend the model to more standard RBC environment
 - Compare an economy with and without endogenous uncertainty
 - The mechanism generates substantial persistence

- Infinite horizon model in discrete time
- \overline{N} atomistic firms indexed by $n \in \{1, \dots, \overline{N}\}$ producing a homogeneous good
- Firms have CARA preferences over wealth

$$u(x) = \frac{1}{a} \left(1 - e^{-ax} \right)$$

Investment and Adjustment Costs

- Each firm *n* has a *unique* investment opportunity and must decide to either do the project today or wait for the next period
 - \blacktriangleright Firms face a random fixed investment cost $f \sim {\rm cdf}\; F,$ iid, with variance σ^f
 - $N \in \{1, \dots, \overline{N}\}$ is the endogenous number of firms that invest.
 - Firms that invest are immediately replaced by firms with new investment opportunities
- The project produces output

$$x_n = \theta + \varepsilon_n^x$$

• Aggregate productivity (the **fundamental**) θ follows a random walk

$$\theta' = \theta + \varepsilon^{\theta}$$

 $\text{ and } \varepsilon^{\theta} \sim \text{ iid } \mathcal{N}\left(0, \gamma_{\theta}^{-1}\right), \ \varepsilon_{n}^{x} \sim \text{ iid } \mathcal{N}\left(0, \gamma_{x}^{-1}\right).$

- Each firm *n* has a *unique* investment opportunity and must decide to either do the project today or wait for the next period
 - Firms face a random fixed investment cost $f \sim \operatorname{cdf} F$, iid, with variance σ^f
 - $N \in \{1, \dots, \overline{N}\}$ is the endogenous number of firms that invest.
 - Firms that invest are immediately replaced by firms with new investment opportunities
- The project produces output

$$x_n = \theta + \varepsilon_n^x$$

- Aggregate productivity (the fundamental) θ follows a random walk

$$\theta'=\theta+\varepsilon^\theta$$

 $\text{ and } \varepsilon^{\theta} \sim \operatorname{iid} \mathcal{N}\left(0, \gamma_{\theta}^{-1}\right), \ \varepsilon_{n}^{x} \sim \operatorname{iid} \mathcal{N}\left(0, \gamma_{x}^{-1}\right).$

Information

Firms do not observe θ directly, but receive noisy signals:

 Public signal that captures the information released by media, agencies, etc.

$$Y = \theta + \varepsilon^{y}$$
, with $\varepsilon^{y} \sim \mathcal{N}\left(0, \gamma_{y}^{-1}\right)$

- Output of all investing firms
 - Each individual signal

$$x_n = \theta + \varepsilon_n^x$$
, with $\varepsilon_n^x \sim \operatorname{iid} \mathcal{N}\left(0, \gamma_x^{-1}\right)$

can be summarized by the aggregate signal:

$$X \equiv \frac{1}{N} \sum_{n \in I} x_n = \theta + \frac{1}{N} \sum_{n \in I} \varepsilon_n^{\times} \sim \mathcal{N}\left(0, (N\gamma_{\times})^{-1}\right)$$

- Note:
 - ▶ No bounded rationality: firms use all available information efficiently
 - No asymmetric information

Each firm starts the period with common beliefs

- 1 Firms draw investment cost f and decide to invest or not
- 2 Production takes place, public signals X and Y are observed
- 3 Agents update their beliefs and θ' is realized

• Before observing signals, firms share the same beliefs about heta

$$\boldsymbol{\theta} | \boldsymbol{\mathcal{I}} \sim \mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\gamma}^{-1}\right)$$

- Our notion of uncertainty is captured by the variance of beliefs $1/\gamma$
 - Subjective uncertainty, as perceived by decisionmakers, crucial to real option effects
 - ▶ Time-varying risk or volatility (Bloom et al., 2012) is a special case

Law of Motion for Beliefs

• After observing signals X and Y, the *posterior about* θ is

$$\theta \mid \mathcal{I}, X, Y \sim \mathcal{N}\left(\mu_{\textit{post}}, \gamma_{\textit{post}}^{-1}\right)$$

with

$$\mu_{post} = \frac{\gamma \mu + \gamma_y Y + N \gamma_x X}{\gamma + \gamma_y + N \gamma_x}$$
$$\gamma_{post} = \gamma + \gamma_y + N \gamma_x$$

• Next period's *beliefs about* $\theta' = \theta + \varepsilon^{\theta}$ is

$$\mu' = \mu_{post}$$
$$\gamma' = \left(\frac{1}{\gamma_{post}} + \frac{1}{\gamma_{\theta}}\right)^{-1} \equiv \Gamma(N, \gamma)$$

• Firms choose whether to invest or not

$$V(\mu, \gamma, f) = \max \left\{ \underbrace{V^{W}(\mu, \gamma)}_{\text{wait}}, \underbrace{V^{\prime}(\mu, \gamma) - f}_{\text{invest}} \right\}$$

• Decision is characterized by a threshold $f_c(\mu,\gamma)$ such that

firm invests $\Leftrightarrow f \leq f_{c}(\mu, \gamma)$

• Value of waiting

$$V^{W}(\mu,\gamma) = \beta \mathbb{E}\left[\int V\left(\mu',\gamma',f'\right) dF\left(f'\right) \mid \mu,\gamma\right]$$

with
$$\mu' = \frac{\gamma \mu + \gamma_y Y + N \gamma_x X}{\gamma + \gamma_y + N \gamma_x}$$
 and $\gamma' = \Gamma(N, \gamma)$

• Value of investing

$$V'(\mu,\gamma) = \mathbb{E}\left[u(x) | \mu, \gamma\right]$$

• The aggregate number of investing firms N is

$$N = \sum_{n} \mathbb{1} \left(f_n \leq f_c \left(\mu, \gamma \right) \right)$$

· Firms have the same ex-ante probability to invest

$$p(\mu, \gamma) = F(f_{c}(\mu, \gamma))$$

• The number of investing firms follows a binomial distribution

$$N(\mu, \gamma) \sim Bin\left[\bar{N}, p(\mu, \gamma)\right]$$

Definition

An equilibrium consists of the threshold $f_c(\mu, \gamma)$, value functions $V(\mu, \gamma, f)$, $V^W(\mu, \gamma)$ and $V^I(\mu, \gamma)$, and a number of investing firms $N(\mu, \gamma, \{f_n\})$ such that

- 1 The value functions and policy functions solve the Bellman equation;
- **2** The number of investing firms N satisfies the consistency condition;
- **3** Beliefs (μ, γ) follow their laws of motion.

Characterizing the Evolution of Beliefs: Mean

• Mean beliefs μ follow

$$\mu' = \frac{\gamma \mu + \gamma_y Y + N \gamma_x X}{\gamma + \gamma_y + N \gamma_x}$$

Lemma

For a given N, mean beliefs μ follow a random walk with time-varying volatility s,

$$\mu'|\mu,\gamma=\mu+s(N,\gamma)\varepsilon,$$

with $\frac{\partial s}{\partial N} > 0$ and $\frac{\partial s}{\partial \gamma} < 0$ and $\varepsilon \sim \mathcal{N}(0, 1)$.

• Precision of beliefs γ follow

$$\gamma' = \Gamma(N, \gamma) = \left(\frac{1}{\gamma + \gamma_y + N\gamma_x} + \frac{1}{\gamma_{ heta}}
ight)^{-1}$$

Lemma

1) Belief precision γ' increase with N and γ , 2) For a given N, $\Gamma(N, \gamma)$ admits a unique stable fixed point in γ .

Characterizing the Evolution of Beliefs

$$\gamma' = \Gamma(N, \gamma)$$

Characterizing the Evolution of Beliefs

$$\gamma' = \Gamma(N, \gamma)$$

Proposition

Under some weak conditions and for γ_x small,

1) The equilibrium exists and is unique;

2) The investment decision of firms is characterized by the cutoff $f_c(\mu, \gamma)$ such that:

firm with cost f invests \Leftrightarrow f \leq f_c (μ , γ)

3) f_c is a strictly increasing function of μ and γ .

Aggregate Investment Pattern

- We now examine the existence of uncertainty traps
 - Long-lasting episodes of high uncertainty and low economic activity
- We now take the limit as $ar{N}
 ightarrow \infty$,

$$\frac{N}{\overline{N}} = F\left(f_{c}\left(\mu,\gamma\right)\right)$$

▶ Details

• The whole economy is described by the two-dimensional system:

$$\begin{cases} \mu' &= \mu + s \left(N \left(\mu, \gamma \right), \gamma \right) \varepsilon \\ \gamma' &= \Gamma \left(N \left(\mu, \gamma \right), \gamma \right) \end{cases}$$

$$\gamma' = \Gamma(\mathbf{N}, \gamma)$$

$$\gamma' = \Gamma\left(N\left(\mu, \gamma\right), \gamma\right)$$

$$\gamma' = \Gamma(N(\mu, \gamma), \gamma)$$

$$\gamma' = \Gamma\left(N\left(\mu,\gamma\right),\gamma\right)$$

$$\gamma' = \Gamma(N(\mu, \gamma), \gamma)$$

Definition

Given mean beliefs μ , there is an uncertainty trap if there are at least two locally stable fixed points in the dynamics of beliefs precision $\gamma' = \Gamma(N(\mu,\gamma),\gamma).$

- Does not mean that there are multiple equilibria
 - The equilibrium is unique,
 - The past history of shocks determines which regime prevails

Proposition

For γ_x and σ^f low enough, there exists a non-empty interval $[\mu_l, \mu_h]$ such that, for all $\mu_0 \in (\mu_l, \mu_h)$, the economy features an uncertainty trap with at least two stable steady states $\gamma_l(\mu_0) < \gamma_h(\mu_0)$. Equilibrium $\gamma_l(\gamma_h)$ is characterized by high (low) uncertainty and low (high) investment.

- The dispersion of fixed costs σ^f must be low enough to guarantee a strong enough feedback from information on investment

- We now examine the effect of a negative shock to μ
 - Economy starts in the high regime
 - Hit the economy at t = 5 and last for 5 periods
 - We consider small, medium and large shocks
- Under what conditions can the economy fall into an uncertainty trap?

Uncertainty Traps: Falling in the Trap

Impact of a small negative shock to μ

Impact of a **medium**-sized negative shock to μ

Impact of a **medium**-sized negative shock to μ

Impact of a **medium**-sized negative shock to μ

Impact of a large negative shock to μ

Impact of a large negative shock to μ

Impact of a large negative shock to μ

- We now start after a full shift of the economy towards the low regime
- How can the economy escape the trap?

Uncertainty Traps: Escaping the Trap

- The economy displays strong non-linearities:
 - for small fluctuations, uncertainty does not matter much,
 - only large or prolonged declines in productivity (or signals) lead to self-reinforcing uncertainty events: uncertainty traps
- In such events, the economy may remain in a depressed state even after mean beliefs about the fundamental recover (μ)
 - Jobless recoveries, high persistence in aggregate variables
- The economy can remain in such a trap until a large positive shock hits the economy

- The economy is inefficient because of an informational externality
 - Firms do not internalize the effect of their investments on public information

Proposition

The following results hold:

1) The competitive equilibrium is inefficient. The socially efficient allocation can be implemented with positive investment subsidies $\tau(\mu, \gamma)$; 2) In turn, uncertainty traps may still exist in the efficient allocation.

- Robustness:
 - Neoclassical production functions with capital and labor
 - Mean-reverting process for θ
 - Long-lived firms that accumulate capital over time
 - Firms receive investment opportunities stochastically

- Representative risk neutral household owns firms and supplies labor
- CRS production technology in capital and labor:

$$(A+Y)\,k_n^{\alpha}l_n^{1-\alpha}$$

with $Y = \theta + \varepsilon^Y$ and $\theta' = \rho_{\theta}\theta + \varepsilon^{\theta}$

- Firms accumulate capital over time: $k'_n = (1 \delta + i) k_n$
- Convex cost of investment: $c(i) \cdot k_n$
- Fixed cost of investment: $f \cdot k_n$
- Stochastic arrival of investment opportunity with probability \overline{q}
 - Denote Q the total stock of firms with an opportunity
- Economy aggregates easily thanks to linearity in k_n (Hayashi, 1982)

Parameter	Value
Time period	Month
Total factor productivity	A = 1
Discount factor	$eta = (0.95)^{1/12}$
Depreciation rate	$\delta = 1 - (0.9)^{1/12}$
Share of capital in production	lpha= 0.4
Probability of receiving an investment opportunity	$\overline{q} = 0.2$
Cost of investment	f = 0.1
Variable cost of investment $c\left(i ight)=i+\phi i^{2}$	$\phi=$ 10
Persistence of fundamental	ho= 0.99
Precision of ergodic distribution of fundamental	$\gamma_{ heta}=$ 400
Precision of public signal	$\gamma_y = 100, 1000, 5000$
Precision of aggregated private signals when $N = 1$	$\gamma_x = 500, \underline{1500}, 5000$

Table: Parameters values for the numerical simulations

Numerical Example: Dynamics of Uncertainty

- Multiple stationary points in the dynamics of γ still obtain
 - But other state variable evolve in the background: K and Q
 - In a trap, as K reaches a low, firms start investing
- The economy is unlikely to remain in a trap forever, but we may still have persistence

Numerical Example: Negative 5% shock to μ

Numerical Example: Sensitivity

Numerical Example: Negative 50% shock to γ

Numerical Example

• Results:

- Endogenous uncertainty substantially increase the persistence of recessions vs. constant uncertainty in an RBC model
- The additional persistence is large for a wide range of values for γ_x, it is however important that γ_y is not too high for uncertainty to matter
- Key challenge:
 - How to identify/measure the information parameters in the data for full quantitative evaluation

- We have built a theoretical model in which uncertainty fluctuates endogenously
- The complementarity between economic activity and information leads to uncertainty traps
- Uncertainty traps are robust to more general settings
 - Full quantitative evaluation using firm-level data on investment and expectations
 - Uncertainty on industry-level productivity or aggregate TFP growth
- Interesting extensions:
 - Monopolistic competition: people not only care about the fundamental but also about the beliefs of others (higher-order beliefs)
 - Financial frictions: amplification through risk premium

Proposition

If $\beta e^{\frac{a^2}{2\gamma_{\theta}}} < 1$ and F is continuous, twice-differentiable with bounded first and second derivatives, for γ_x small,

1) The equilibrium exists and is unique; 2) The investment decision of firms is characterized by the cutoff $f_c(\mu, \gamma)$ such that firms invest iff $f \leq f_c(\mu, \gamma)$; 3) f_c is a strictly increasing function of μ and γ .

- If $\gamma_{\rm x}$ was constant as we take the limit, a law of large number would apply and θ would be known
- To prevent agents from learning too much, we assume $\gamma_x(\bar{N}) = \gamma_x/\bar{N}$. Therefore the precision of the aggregate signal X stays constant at

$$N\gamma_x(\bar{N}) = n\gamma_x$$

where

$$n = \frac{N}{\overline{N}}$$

is the fraction of firms investing.

• Under this assumption, the updating rules for information are the same as with finite ${\it N}$

2007-2009 Recession

- Our theory predicts that deep recessions are accompanied by
 - ► High subjective uncertainty ► Germany ► Italy ► UK ► US
 - Increased firm inactivity Literature Compustat
- We provide purely suggestive evidence
 - Data is extremely limited and difficult to interpret
 - Causality is hard to identify

Some suggestive evidence: Dispersion of Beliefs

- Bachmann, Elstner and Sims (2012):
 - Survey of 5,000 German businesses (IFO-BCS)
 - Compute variance of ex-post forecast error about general economic conditions (FEDISP) and a dispersion of beliefs (FDISP)

Some suggestive evidence: Italy

- Bond, Rodano and Serrano-Velarde (2013):
 - Survey of Industrial and Service Firms (Bank of Italy)
 - All firms with 20 or more employees in industry or services

Figure: Mean and variance of expected sales

Some suggestive evidence: CBI

- CBI Industrial Trend Survey:
 - Monthly survey of CEOs across 38 manufacturing sectors
 - Factors likely to limit capital investment in the next 12 months

Figure: Fraction of responses 'uncertain demand' (Leduc and Liu, 2013)

Some suggestive evidence: Uncertainty over the Business Cycle

- National Federation of Independent Businesses 2012 Survey ranks the most severe problems facing small business owners:
 - ▶ 40% of respondents ranked economic uncertainty as the main problem that they faced in 2012
- Michigan Survey of Consumers: main reason why it is not a good time to buy a car (% of households)

- Prevalence of inactivity during recessions
 - Cooper and Haltiwanger (2006): 8% of firms in the US have near-zero investment (< 1% in absolute value) between 1972 and 1988
 - Gourio and Kashyap (2007): correlation of -0.94 between aggregate investment and share of investment zeros in the US between 1975 and 2000
- Carlsson (2007):
 - Estimates neoclassical model with irreversible capital using US firm-level data
 - Uncertainty (volatility in TFP and factor prices) has negative impact on capital accumulation in short and long run
 - ▶ Large SR effect, moderate LR: 1 SD increase in uncertainty leads to a drop of 16% of investment in SR, 2% if permanent

Some suggestive evidence: Firm Inactivity and Uncertainty

• Evidence from Compustat

Some suggestive evidence: Firm Inactivity and Uncertainty

• Correlation firm inactivity (Compustat) and uncertainty (Michigan Survey)

• Simple bivariate VAR with investment zeros and uncertainty

Return

() At the beginning, all firms share the same prior distribution on heta

$$\boldsymbol{\theta} | \boldsymbol{\mathcal{I}} \sim \mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\gamma}^{-1}\right)$$

2 Firms without investment opportunities receive one with probability \overline{q}

- 3 Firms with an investment opportunity decide whether or not to invest
- **4** Investing firms receive a private signal $x_n = \theta + \varepsilon_n^x$ and choose labor I_n
- **5** The aggregate shock Y is realized, individual actions are observed
- 6 Production takes place, markets clear
- Ø Agents update their beliefs

- The structure of information is the same as before
 - Assume, in addition, that each firm knows its individual state and the productivities and capital stocks of others.
- Revealing equilibria:
 - ▶ individual private signals x_n are revealed through firms' hiring decisions
 - summarize by public signal X with precision $N\gamma_x$
- Belief dynamics

$$\mu' = \rho_{\theta} \frac{\gamma \mu + \gamma_{y} Y + \gamma_{x} \left(\int q_{j} \chi_{j} k_{j} dj \right) X}{\gamma + \gamma_{y} + \gamma_{x} \int q_{j} \chi_{j} k_{j} dj} = \rho_{\theta} \frac{\gamma \mu + \gamma_{y} Y + nQ\gamma_{x} X}{\gamma + \gamma_{y} + nQ\gamma_{x}}$$
$$\gamma' = \left(\frac{\rho_{\theta}^{2}}{\gamma + \gamma_{y} + \gamma_{x} \int q_{j} \chi_{j} k_{j} dj} + \frac{1 - \rho_{\theta}^{2}}{\gamma_{\theta}} \right)^{-1} = \left(\frac{\rho_{\theta}^{2}}{\gamma + \gamma_{y} + nQ\gamma_{x}} + \frac{1 - \rho_{\theta}^{2}}{\gamma_{\theta}} \right)^{-1}$$

◀ Return
Extended Model - Planner

• The planning problem in this economy is

$$V(\mu,\gamma,\{k_j,q_j\}) = \max_{\{i_j,k_j,l_j\}} \mathbb{E}\left\{U\left((A+Y)\int_0^1 k_j^{\alpha} l_j^{1-\alpha} dj\right) - \int_0^1 (f+c(i_j)) k_j q_j \chi_j d_j + \beta V\left(\mu',\gamma',\{k_j',q_j'\}\right)\right\}$$

subject to

$$\begin{split} 1 &= \int_{0}^{1} l_{j} dj \\ k_{j}' &= q_{j} \chi_{j} k_{j} \left(1 - \delta + i_{j} \right) + \left(1 - q_{j} \chi_{j} \right) k_{j} \left(1 - \delta \right) \\ q_{j}' &= q_{j} \left(1 - \chi_{j} \right) + \left(1 - q_{j} + q_{j} \chi_{j} \right) \begin{cases} 0 & \text{w.p. } 1 - \overline{q} \\ 1 & \text{w.p. } \overline{q} \end{cases} \end{split}$$

and laws of motion for information.

• The planning problem aggregates into

$$\begin{split} V\left(\mu,\gamma,K,Q\right) &= \max_{i,n\in[0,1]} \mathbb{E} \left\{ U\left(\left(A+\mu\right)K^{\alpha}-nQ\left(f+c\left(i\right)\right)\right) \right. \\ &\left. +\beta V\left(\mu',\gamma',K',Q'\right) \right\} \end{split}$$

subject to

$$egin{aligned} &\mathcal{K}' = \left(1-\delta
ight)\mathcal{K}+ inQ \ &\mathcal{Q}' = \left(1-\delta
ight)\left(1-\overline{q}
ight)\left(1-n
ight)\mathcal{Q}+ \left(1-\delta
ight)\overline{q}\mathcal{K}+\overline{q}inQ \end{aligned}$$

and laws of motion for information, where $K = \int k_j dj$ and $Q = \int k_j q_j dj$.

