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Abstract: 

Managing infectious disease is among the foremost challenges for public health policy.  

Interpersonal contacts play a critical role in infectious disease transmission, and recent advances 

in epidemiological theory suggest a central role for adaptive human behaviour with respect to 

changing contact patterns.  However, theoretical studies cannot answer the question: are 

individual responses to disease of sufficient magnitude to shape epidemiological dynamics and 

infectious disease risk? We provide empirical evidence that Americans voluntarily reduced their 

time spent in public places during the 2009 A/H1N1 swine flu, and that these behavioral shifts 

were of a magnitude capable of reducing the total number of cases.  Moreover, we simulate ten 

years of epidemics (2003 – 2012) based on mixing patterns derived from individual time-use 

data to show that the mixing patterns in 2009 yield the lowest number of total infections relative 

to if the epidemic had occurred in any of the other ten years.  The World Health Organization 

and other public health bodies have emphasized an important role for “distancing” or non-

pharmaceutical interventions. Our empirical results suggest that neglect for voluntary avoidance 

behaviour in epidemic models may overestimate the public health benefits of public social 

distancing policies.   
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Introduction 

Managing infectious disease is among the foremost challenges for public health policy.  The 

World Health Organization and other public health bodies have emphasized an important role for 

“social distancing” or non-pharmaceutical interventions such as school and workplace closure 

[1]. Indeed, studies have shown that distancing policy can effectively mitigate disease spread by 

reducing contact between susceptible and infected individuals [2–4].  However, distancing policy 

can impose large economic and social costs [5–8].  In order to understand the public health 

benefits of social distancing policies, we must establish a behavioural baseline during an 

epidemic – the public health outcomes resulting from private actions of individuals to reduce 

their risk of infection [9]. 

Economic-epidemiology theory suggests that susceptible individuals may forgo 

beneficial contacts in order to reduce the probability of contracting a costly infectious disease 

[7,10–13].  Following standard epidemiological theory, this voluntary avoidance behaviour 

would in turn mitigate disease transmission and imply a dynamic feedback between humans and 

pathogens over the course of an epidemic [14].  We study whether individuals engaged in 

epidemiologically avoidance behaviour during the 2009 A/H1N1, and if the magnitude of 

individual behavioural shifts was of sufficient magnitude to alter epidemiological dynamics in 

the US.  This enables us to quantify the approximately size of adaptive behavioural feedbacks on 

public health outcomes. 

Several studies have used simulation to illustrate the potential public health benefits of 

avoidance behaviour [15,16].  Empirical efforts to quantify individuals’ responses to infectious 

disease risk are often based on one-off surveys in the wake of the epidemic, but not coupled with 

epidemiological dynamics [17–20]; or infer potential avoidance behaviour ex post from observed 
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epidemic outcomes [21–23].  While these studies provide empirical insights into the role of 

avoidance behaviour during an epidemic, no study has quantified avoidance behaviour based on 

observable time-use data and coupled that behavioural shift with an epidemiological model to 

provide an empirical estimate of the public health consequences of avoidance behaviour. 

We fill this important gap in the literature by estimating voluntary avoidance behaviour 

during the 2009 A/H1N1 (swine) flu epidemic using a detailed dataset with daily observations on 

how Americans spent their time between 2003 and 2012.  We find that the average American 

reduced his time spent in potentially risky public locations by approximately 22 minutes with a 

95% confidence interval of (6, 34) at the peak of the epidemic.  Simulation results suggest that 

this behavioural shift may have reduced peak prevalence by 31% (7%, 48%) and the attack rate 

by 16% (3%, 25%).   

We provide further evidence for epidemiologically meaningful avoidance behaviour by 

estimating empirical age by household size structured contact matrices by year over the ten year 

sample (2003-2012) and constructing counterfactual epidemics based on the outbreak period 

(April 20-December 20) and the pre-outbreak period (January 1 – April 19).  We find that the 

attack rate of an epidemic based on the contact patterns observed during the 2009 outbreak 

period is substantially lower than that based on the average contact patterns observed during the 

outbreak period during 2003-2008 and 2010-2012.  Moreover, contact patterns prior to the 2009 

outbreak period are nearly identical to the average contact patterns prior to the outbreak period in 

2003-2008 and 2010-2012. These results suggest that individual voluntary avoidance behaviour 

was of sufficient magnitude to meaningfully alter disease dynamics and impact transmission of 

the A/H1N1 influenza virus.  Neglecting to account for voluntary avoidance behaviour may lead 

policy analyses to overstate the policy benefits of costly social distancing policies such as school 
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and work closure.  Worse still, failing to understand behavioural responses to disease risk could 

potentially lead to policies that crowd out individuals own incentives to shift toward more 

protective behaviours.  

Our methods to quantify feedbacks between avoidance behaviour and disease prevalence 

differ from those of related studies.  Caley et al. [21], and He et al. [23] both fit epidemiological 

models to epidemic data from 1918 that attribute the model residual to avoidance behaviour.  In 

contrast, survey-based studies [17–20] document individuals’ reported avoidance behaviour, but 

are unable to characterize the human-pathogen feedbacks.  Furthermore, our efforts to build 

behavioural feedbacks into models of 2009 A/H1N1 epidemic complements insights from 

models targeted at other aspects of the epidemic [24–29].  Our study bridges methods by 

utilizing surveyed behavioural data and reported epidemic data (as well as news and internet 

trends) in an epidemiological model.   

Methods  

Data.  Data for this study come from multiple sources.  Time use data for the general population 

were compiled from the American Time-Use Survey (ATUS) (2003-2012) [30]. The ATUS is 

subsampled from the U.S. Current Population Survey that contains detailed demographic and 

socioeconomic information about respondents older than 15 years old and their family members 

(including children under 15 years of age). Survey respondents report a 24-hour diary of 

activities, locations, and accompanying persons for every minute of the day.  We supplement the 

ATUS data with time use data on children at school from the National Health and Activity 

Patterns Survey (NHAPS), a similar time-use survey, that includes children under 15 years old 

[31].   

The weekly number of laboratory-confirmed cases were collected from [32], who obtain 
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data from the Centers for Disease Control and Prevention (CDC) Influenza Surveillance System. 

We used this measure of disease prevalence to capture the objective risk of spending time in 

public.  Laboratory-confirmed cases peaked at 9,734 during the week of October 18-24, 2009 

(Supplementary Figure S1).  Data from Google Trends were used to measure the subjective risk 

of infection over the course of the epidemic. Google monitors search volume of specific key 

words and the occurrence of key words in media headlines from a variety of sources 

(Supplementary Figure S1). Extreme weather data were collected from The National Oceanic 

and Atmospheric Administration National Climatic Data Center Storm Events Database [33].  

Extreme weather was used to control for additional time spent at home to avoid weather rather 

than flu risk.  

Regression. We specify a series of fixed effects regression models to test the hypothesis that 

individuals engaged in avoidance behaviour in response to subjective (media attention) and 

objective (laboratory confirmed cases) measures of risk. The fixed effects regression model is  

௧௦௠ܧܯܫܶ ൌ ଴ߚ ൅ ௧ܵܧܵܣܥଵߚ ൅ ௦௧ܣܫܦܧܯଶߚ ൅ ௧௦௠ܴܧܪܶܣܧଷܹߚ ൅ ସܺ௧௦௠ߚ ൅	ߛଵ݀௦ ൅ ଶ݀௠ߛ 	

൅ ܽ௦௠ ൅ 		௦௧ݑ

The variable ܶܧܯܫ denotes the number of minutes spent at home (ATUS) and subscript t 

indexes date, and the subscripts s and ݉ index state and month. Time spent at home is 

considered safer than in public microenvironments during an epidemic and is indeed the 

motivation for social distancing policy such as school closure.  Moreover, 26% of U.S. 

households consist of a single individual, which eliminates all household infection risk for this 

26% of households [30].  We develop this argument further in the epidemic model section.   

The variable ܣܫܦܧܯ represents the Google search index, ܵܧܵܣܥ represents the number 

of CDC laboratory confirmed weekly cases, ܹܴܧܪܶܣܧ represents instances of extreme 
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weather, ܺ is a vector of demographic characteristics described in the electronic supplementary 

material, and ݀ and ܽ are month and state dummy variables that form the fixed-effects model.   

We estimate three models using state fixed effects (model 1), month fixed effects (model 

2), and state by-month fixed effects (model 3) to illustrate that our estimates are robust across 

model specifications (two additional models are presented in the SI material to further examine 

model specification uncertainty).  All regressions are based on 27,091 observations of ATUS 

from 2008 to 2010 so pre- and post-epidemic periods are included in the model.  Summary 

statistics are reported in Supplementary Table S1.  All regression analyses were conducted in 

Stata 12. 

Epidemic Simulations. We construct a SIR compartmental model to develop a first 

approximations to counterfactual epidemics of the 2009 A/H1N1 outbreak [34–36]. We specify 

the set of differential equations governing the transmission dynamics as  

ሶࡿ ൌ െቀࡿ ∘ ࡯ߜ ቀࡵ
ࡺ
ቁ ൅ ࣌ ∘ ቂࡿ

ࡴ
∘ ௛࡯ߜߙ ቀࡵ

ࡺ
ቁቃቁ;  

ሶࡵ ൌ ቀࡿ ∘ ࡯ߜ ቀࡵ
ࡺ
ቁ ൅ ࣌ ∘ ቂࡿ

ࡴ
∘ ௛࡯ߜߙ ቀࡵ

ࡺ
ቁቃቁ െ  (1)    ;ࡵݒ

ሶࡾ ൌ      ࡵݒ

where ∘ and / denotes element by element multiplication and division.  ࡿ, ܭ are ࡾ and ,ࡵ ൈ 1 

vectors of susceptible, infectious, and recovered health classes where ܭ is the number of 

subpopulations (e.g., age groups). ࡺ is an ܭ ൈ 1 vector of subpopulations in each segment. ࡴ is 

a ܭ ൈ 1 vector of the number of households in each subpopulation.  ࡯ and ࡯௛ are ܭ ൈ  public ܭ

and household probabilistic contact matrices that describe the interaction between and individual 

in subpopulation ݆ (rows) and subpopulation ݇ (columns).  ࣌ is a ܭ ൈ 1 vector indicating the 

number of infected households where each element must be strictly between 0 and ߜ .ࡵ is the 

disease-specific infectivity parameter, or conditional probability of transmission per minute of 
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contact between a susceptible and infected individual. ߙ is a scalar that adjusts the relative 

infectiveness of a contact minute in the home relative to one in public. 1 ⁄ݒ  is the average 

infectious period constant across classes.    

 Epidemic dynamics depend on time spent in public and household environments [37,38].  

The first term in equation (1) captures public transmission and is the contact time analog to 

common specifications.  An individual makes potentially infectious contacts with household 

members if and only if there is at least one infected person in the household. The second terms 

capture within household transmission in the infectious home environment. This model makes a 

number of conservative assumptions that inflates the within household transmission. These 

assumptions will work to mask the epidemiological effects of individuals attempting to avoid 

infection by allocating more time to the household. We find significant effects of avoidance 

behaviour in spite of these assumptions.  At any point in time, the expected number of 

susceptible individuals within the average household for each subpopulation is at most ࡿ ⁄ࡴ .  

This is an expectation across the entire population, but knowing that infected households must 

have at least 1 infectious individual and that household sizes are fixed implies the expected 

number of susceptible individuals in an infectious household must be less than ࡴ/ࡿ, unless all 

households are infected.  We approximate the number of infectious households in subpopulation 

݆ as ܫ, which maximizes the potential for within household transmission. These assumptions are 

conservative and overestimate within household transmission because it allows the greatest 

number of households to be infected, imply a larger number of susceptibles in the infectious 

household environment than are truly at risk at home, and implicitly allows members of 

infectious households to “mix” freely among infectious households regardless of true home.       

We assume ߜ is common to all population types.  This assumption could be generalized 
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with estimates of ߜ that are location and attribute class specific that are independent of 

behaviour.  To our knowledge such estimates do not exist because the multiplicative relationship 

between contact time and infectivity makes identification of location-specific ߜ difficult without 

imposing additional assumptions. Using age or location specific estimates of ߜ that did not 

control for contact time would confound our results.  

While many detailed models of the H1N1 epidemic have been proposed (e.g., 

[24,39,40]), our work focuses on the behavioural responses and feedback to epidemiological 

dynamics.  We use a relatively simple model in order to focus attention on the potential role of 

voluntary avoidance behaviour as a feedback mechanism.  We model an epidemic over a short 

period of time such that births and deaths are negligible, a common assumption for influenza 

[41–43].  The model assumes that the entire population is susceptible prior to the introduction of 

the pathogen.   

We simulate the epidemiological relevance of the avoidance behaviour estimated in the 

regression model using a homogeneous mixing model (ܭ ൌ 1).  In the baseline case, public 

contact time is equal to the average of time spent in public in the ATUS (ܥ଴ ൌ 316	minutes or 

5.26 hours per day) and remains constant throughout the epidemic (no avoidance). Alternatively, 

individuals respond to disease risk by shifting time in public to their household.  Formally, 

ሻܫሺܥ ൌ ଴ܥ െ ଵߚ ∗ ߶ ∗
ூሺ௧ሻ

ଵ଴଴଴
, where ߚଵ is the minutes of avoidance behaviour per 1000 cases 

estimated from the regression model and ߶ ൌ 8.33% is the proportion of infected individuals 

confirmed through laboratory testing described in the Supplementary Material.  Likewise, 

ሻܫ௛ሺܥ ൌ ଴ܥ
௛ ൅ ଵߚ ∗ ߶ ∗

ூሺ௧ሻ

ଵ଴଴଴
 is the contact time the average individual experiences at home.  We 

assume that the population has no memory and only responds to disease risk at time ݐ, which 

yields conservative estimates of the epidemiological impact of avoidance behaviour.  This 
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infection dependent contact rate is similar to the effective rate of transmission characterized by 

Funk et al [15] to model avoidance behaviour as a function of information about disease risk.   

While the relationship between time spent interacting in public and transmission may be 

complex, and depend on many factors, ߜ can be interpreted as a first-order approximation of 

infectivity conditional on contact.  We calibrate the conditional infectivity, ߜ, such that the 

maximum of the simulated prevalence path under avoidance behaviour equals the peak 

prevalence observed during the 2009 A/H1N1 outbreak (9,734 cases), which yields ߜ ൌ1.4 10-3.  

The simulation without avoidance then represents the possible epidemic outcomes had no 

individual engaged in avoidance behaviour.  We set the household contact scalar to unity 

ߙ) ൌ 1ሻ. This assumption is based on a systematic review of the empirical literature on 

household transmission that finds no consistent patterns [44].  Cauchemez et al. [45] and House 

et al. [38] find that larger households do not appear to have greater within home transmission, 

suggesting that a minute in proximity with an infected person within in a household is probably 

not qualitatively different from a minute spent with an infected person outside the household.  

We investigate the sensitivity of the results to this assumption in the supplementary materials. 

We assume a population of 4.1ൈ106 with 1.5ൈ106 households, representing a U.S. city 

the size of the Phoenix Metropolitan Statistical Area (MSA), which was among the most affected 

areas during the 2009 A/H1N1 epidemic. We initialize the epidemic by introducing 20 infected 

individuals into the susceptible population.  Increasing the number of initially infected 

individuals accelerates the time until large-scale outbreak but has no effect on the avoidance 

results. 

Probabilistic Contact Matrix (PCM). We provide an alternative test for the impact of 

avoidance behaviour on epidemic dynamics by constructing counterfactual epidemics via 
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simulation based on age-household size ({0-4,5-12,13-17, 18-24, 25-49, 50-64, 

65+}×{1,2,3,4,5}∈ ܲ) where set ܲ is of length ܭ probabilistic contact matrices (PCMs) derived 

from the ATUS for each year between 2003 and 2012 [46].  The PCMs specify the amount of 

time (excluding time asleep) an individual of group ݆ ∈ ܲ is exposed to populations ݇ ∈ ܲ.   

These PCMs capture the fact that individuals can modify their schedule to avoid 

potentially infected individuals as an alternative form of avoidance behaviour.  For example, 

young adults may go to health clubs and gyms in the evening to socialize, while other adults may 

go early in the morning to avoid congestion. Our PCM construction approach captures an 

individual’s reallocation of time throughout the day across many activities including time at 

home.  We break each individual year from 2003 to 2012 into two periods and construct a total 

of 20 PCMs.  The first period is April 20 to December 20, the period of the actual A/H1N1 

outbreak during 2009.  The second period is January 1 to April 19, the period prior to the 2009 

A/H1N1 outbreak.  For brevity, we refer to April 20 through December 20 as the outbreak period 

and January 1 through April 19 as the pre-outbreak period.  Counterfactual simulations are 

conducted for each empirical PCM calculated from the ATUS and NHAPS data according to the 

SIR model.  We provide more detail on the PCM methods in the supplementary material. 

Bootstrap Method. We employ bootstrap techniques to calculate confidence intervals around 

simulation results because of the nonlinearity in the SIR model and lack of closed form solution.  

The fixed-effects regression yields a parameter estimate of ߚଵ with distribution ܰሺߚଵ, ଵߪ
ଶሻ.  We 

simulate the SIR model 1000 times.  In each simulation, the avoidance parameter is drawn from 

the distribution ܰ൫ߚመଵ, ොଵߪ
ଶ൯ where the parameters are estimated in the regression.  We report the 

2.5 and 97.5 percentiles of the 1000 simulated results.   
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The construction of the PCM and subsequent epidemic simulations are deterministic.    

However, the ATUS is a stratified random sample of the U.S. population and thus sampling error 

exists. We employ a bootstrap approach to estimate standard errors for each element of the 

contact matrices as well as epidemic simulation outcomes (e.g., cumulative cases). We generate 

1,000 resamples of the U.S. population over 2003-2012. We sample at the respondent-level and 

not the activity level so if an individual was selected, his or her entire 24-hour diary was used. 

We calculate the probabilistic contact matrices for each year (2003-2012) for each of the 1,000 

bootstrap samples and simulate an epidemic based on each sample. We then construct 95% 

confidence intervals around the model outcomes using the 2.5 and 97.5 percentiles of the 

estimates from the 1,000 replications.  Supplementary Figure S2 illustrates the ATUS sampling 

error propagating through the epidemic simulation.   

Results 

Additional Time at Home.  We find that individuals increased their time spent at home in 

response to CDC confirmed cases by a statistically significant amount (Table 1, table with results 

for all control variables provided in Supplementary Table S2). We quantify sample uncertainty 

through 95% bootstrap confidence intervals and model uncertainty by estimating several model 

specifications for robustness. We use the point estimate from model three that controls for state 

and month fixed effects, which suggests that people spent 2.38 additional minutes at home for 

every 1,000 CDC confirmed cases with a 95% confidence interval of (0.278, 4.48).  The 

avoidance response is statistically significant across model specifications (models 1-3 and the 

two additional models in the supplemental material).  

Our estimates suggest that the average person in the population spent an additional 22.11 

minutes at home, with 95% confidence interval of (5.76, 33.57), at the peak of the epidemic 
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when the CDC reported 9,734 new cases in a single week. This effect size is an average across 

the entire population, with some individuals likely spending substantially more time at home and 

others spending less. For comparison, the average individual spent 34.47 (10.56, 58.38) 

additional minutes at home during extreme weather events, e.g., snowstorms.  Furthermore, we 

find no evidence that historically sensitive groups (persons 65+ years old and parents with 

children) engage in additional avoidance despite spending substantially more time at home 

regardless of the epidemic state (Supplementary Table S2 models (4) and (5)).  

We illustrate the potential epidemiological significance of this avoidance response by 

comparing two simulated epidemics: 1) when individuals fail to respond to the epidemic, and 

maintain a constant level of contacts – the standard assumption in most epidemic studies; and 2) 

when individuals reduce their time spent in public by 2.38 (0.278, 4.48) minutes per thousand 

confirmed cases (model 3 in Table 1). As prevalence of the infection rises, individuals that 

engage in avoidance gradually shift time in public into their household relative to the no 

avoidance case. This is true despite the fact that the small fraction of infected households, in our 

model always less than 5% at a point in time, may not be safer than public. The substitution of 

relatively safe household time, for time in public, drives a wedge between the simulated 

epidemics with (dashed) and without (solid) avoidance behaviour (Figure 1).  At the peak of the 

simulated epidemic on day 92, individuals spend 22.11 minutes less in public with a bootstrap 

confidence interval of (5.76, 33.57), which reduces the peak prevalence by 31.20% (7.46%, 

48.27%) from 4.22% of the population without a behavioural avoidance model to 2.90% (2.18%, 

3.90%) with the avoidance model. As the epidemic wanes, so too does the incentive to stay at 

home. The daily incidence during the last half of the infection is greater when individuals avoid 

infection early on because more of the population remains susceptible and avoidance behaviour 
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fades. Nevertheless, by the end of the epidemic avoidance behaviour reduces the attack rate by a 

proportional 13% (2.99%, 21.03%) from 50% of the population without avoidance behaviour to 

42.22% (37.46%, 48.29%) with avoidance, which is comparable to the simulated attack rate of 

A/H1N1 reported in Towers and Chowell [28].   

Adjusting Contact Patterns.  Simulation results using the empirical PCMs suggest that 

individuals modified contacts during the A/H1N1 outbreak reducing transmission rates and the 

impact of the epidemic relative to the average across all years other than 2009 (Figure 2). During 

the outbreak period, peak prevalence falls from 2.83% (2.68%, 2.98%) of the population in the 

average simulation to 1.98% (1.49%, 2.52%) in 2009, a 30% decrease. This reduction in peak 

prevalence is comparable to the 28% decrease found by simulating the avoidance behaviour 

based on the regression results. The smaller epidemic in 2009 translates into a lower attack rate, 

32.72% (28.91%, 36.64%), compared to the average case 38.60% (37.73%, 39.47%).  Moreover, 

an epidemic based on the contact patterns in 2009 pre-outbreak period appears similar to the 

average across all years. The attack rate in 2009 is 39.96% (37.40%, 47.42%) while the attack 

rate in the average across all years scenario is 38.71% (37.56%, 39.84%).  These results and 

sensitivity analyses are contained in Supplementary Table S3. 

Figure 3 graphically presents a one-tailed test, and associated p-values, for the difference 

between simulated attack rate in the pre-outbreak period and outbreak period.  2009 is the only 

year with statistically significant positive difference at 5.88 ,0.05=ߙ percentage points with p-

value of 0.02.  

The simulation model based on the empirical PCMs disaggregates the population by age 

and household size.  We find less behavioural heterogeneity across household size than across 
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age groups.  The household size heterogeneity that is present indicates that single-person 

households and large households of five or more suffer lower attack rates than households of 2-4 

individuals.  This finding is consistent with Cauchemez et al. [45] and may indicate that 

members of larger households spend more time at home.  We provide more detail in the 

supplementary material. 

The regression model indicates that many factors influence how people spend their time.  

Because the empirical PCMs simply reflect probabilistic interactions between age groups, alone 

they do not reveal the mechanism responsible for the change in behaviour.  However, the 

combined evidence from the simulations based on the empirical PCMs and the regression model 

that does identify avoidance behaviour as an epidemiologically significant factor suggests that 

people changed their behaviour during the A/H1N1 epidemic in a way that measurably affected 

epidemiological dynamics.  

Discussion 

We measure the extent to which Americans engaged in voluntary avoidance behaviour during 

the 2009 A/H1N1 epidemic and show that such behaviour is of epidemiologically meaningful 

magnitude.  Our estimates derive from a national time-use survey conducted by the U.S. Census 

Bureau nearly every day since 2003.  We show that individuals spent on average 2.38 (0.278, 

4.48) additional minutes at home for every 1,000 CDC confirmed cases during the 2009 A/H1N1 

epidemic.  Moreover, simulations based on empirical contact matrices suggest that individuals 

adjusted behaviour in a manner that reduced contact time during the outbreak period in 2009 

unlike the pre-outbreak period in 2009, or the outbreak period in any other year.  These results 
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are further supported by recent anecdotal evidence of avoidance behaviour in American churches 

frequented by immigrants from west Africa during the ongoing Ebola crisis [47]. 

Social distancing policies are an important public health tool for controlling epidemics, 

particularly during the early stages.  However, the social and economic costs of social distancing 

policies imply that public health officials must weigh the costs and benefits of such measures to 

determine when to employ the social distancing policy [13,40].  Most research on social 

distancing policy attributes all behavioural response to the policy [48,49].  Our results provide 

empirical evidence that individuals respond to disease risk with behavioural shifts that are likely 

sufficiently large to influence the course of an epidemic.  Therefore, emergency response plans - 

based on epidemic forecasts that neglect self-directed behavioural response - may prescribe 

costly measures to reduce transmission rates that would occur because of voluntary avoidance 

behaviour.  It is also possible that poorly planned social distancing policies could counteract 

innate responses and “crowd out” avoidance responses [7,50].  Furthermore, retrospective 

analysis of social distancing policies may appear beneficial when compared to a baseline 

forecasts that did not account for feedbacks and adaptive avoidance behaviour. Including 

accurate self-directed adaptive behavioural responses in baseline models is imperative for those 

models to accurately guide public health policy. 

We have described the epidemiological implications of uniform avoidance behaviour in a 

population.  However, our control variables in the fixed effects regressions make it possible to 

consider heterogeneity in avoidance behaviour across subpopulations (e.g., age classes).  This 

heterogeneity may reflect variation in risk perception (the cost of avoidance) as well as the 

benefits of contact.  The development of a heterogeneous mixing model with heterogeneous 
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avoidance behaviour is beyond the scope of this work, but could have important implications for 

targeted public health policies [48–50]. 

Feedbacks between human behaviours and biological processes are challenging to measure, 

but are receiving great attention in public health, ecology, earth systems, and sustainability. 

While many human-environmental feedbacks likely exist, the strength of these feedbacks is an 

empirical question. Our measure of the strength of feedback between adaptive human behaviour 

and epidemiological conditions suggests meaningful feedbacks that have implications for the 

study of infectious disease, the costs of infectious diseases, and public health policy.  
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Tables and Figures 
 
Table 1. Regression results for time spent at home.  
State fixed effects x x 
Month fixed effects x x 
Month*State fixed effects x 
 coefficient estimates 

 (1) (2) (3) 

CDC reported cases 1.663* 2.378** 2.379** 

 (0.944) (1.057) (1.072) 

Google media index -22.33 -15.02 -17.66 

 (18.98) (19.61) (20.10) 

Extreme Weather 30.88*** 33.54*** 34.47*** 

 (11.97) (11.95) (12.20) 
*p<.1, **p<.05, ***p<.01 
 

 

Figure 1. Simulated epidemic curves. The solid (blue solid) line indicates epidemic with 

avoidance behaviour and the dashed (red dashed) line without and the gray bars represent 95% 

bootstrapped confidence intervals.  The simulations are based on the estimated 2.38 minute 

reduction in time spent in public per thousand cases.  The susceptible population is 4.1×106, the 
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recovery rate is three days, and the infectivity parameter is chosen such that the basic 

reproduction number is 1.4.   
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Figure 2. Simulated epidemic curves and cumulative cases based on contact matrices during 

the epidemic period April 20 to December 20 (panels a and b) and the pre-epidemic period 

January 1 to April 19 (panel c and d).  Panels a and c illustrate the percent of the population 

infected by day.  Solid (blue) lines are 2009, dashed (red) lines are non-2009 average, and thin 

(gray) lines are non-2009 by year.  Panels b and d contain the cumulative number of infected and 

recovered individuals at the end of the epidemic where the bars indicate 95% bootstrap 

confidence intervals.  The asterisk indicates that the pandemic was not declared over until June 

23, 2010 even though very few cases were reported in 2010.   
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Figure 3. Comparing the epidemic and pre-epidemic simulations. The difference between 

simulated cumulative cases from the pre-epidemic period January 1 to April 19 (Fig 2 panel D) 

and the epidemic period April 20 to December 20 (Fig 2 panel B) with 95% bootstrapped lower 

confidence bound represented by bars and p-value of a one-sided hypothesis test with a null that 

the difference is less than or equal to zero.  We reject the null hypothesis in 2009. 
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Supplementary Materials: 

Additional Data Description. 

Extreme weather is used to control for additional time spent at home to avoid weather 

rather than flu risk. The following conditions are used to classify extreme weather events: 

significant weather phenomena causing loss of life, injuries, significant property damage and/or 

disruption to commerce; rare and unusual weather phenomena garnering media attention; and 

other significant meteorological events.   

We collect Google search data to represent a subjective measure of risk.  The measure is 

subjective because it is based on news coverage and general interest in the population rather than 

true risk as measured by the disease prevalence.  Google presents the information in the form of 

a normalised index from 0-100 where 100 represents the most search volume over a given time 

interval. We collect Google Trends for the search terms “swine flu” or “h1n1” in the U.S. only 

between the dates April 19, 2009 to April 04, 2010.  Google search volume peaks (100) during 

the week April 19-26, 2009 (Supplementary Figure S1). We use Google Trends to measure 

media attention rather than Google Flu Trends, a proprietary prediction tool offered by Google, 

because our objective is to measure the population’s discussion about infection risk, which is not 

necessarily correlated with actual prevalence. 

Regression Model. In addition to regression models 1-3 described in the main text, we include 

two additional models in the supplementary material.  Model 4 includes a dummy for age 65 and 

older individuals and an interaction of that dummy variable with the number of laboratory-

confirmed cases to test whether avoidance behaviour was stronger among more sensitive 

individuals. Model 5 includes a similar set of terms for parents spending time with children. The 

ATUS does not survey individuals less than 15 years; however, respondents specify which 
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family members were present during each activity and their demographic information. We use 

parents’ time at home with children as a proxy for the behaviour of children less than 15 years 

old.  Model 6 includes a third set of interactions between parents with children and Saturday to 

further investigate avoidance behavior on the weekend.  

Regression Results. 

We present the full set of parameter estimates for all variables used in the regression 

model in Supplementary Table S2. The constant coefficient represents the time spent at home by 

the baseline individual represented by the omitted categories or binary outcomes in the 

regression (e.g., less than college degree, other race, female, not extreme weather).  The baseline 

respondent spends 335.1 (model 1) to 357.9 (model 2) minutes at home on Monday in January in 

Alabama (excluding sleep and other personal activities).  The coefficients on laboratory 

confirmed cases (ܵܧܵܣܥ) is statistically different from zero in models 1-6, which suggests that 

the result is robust to various model specifications.  

In all models, individuals with a spouse or partner spend more time at home.  People 

spend more time at home as their age increases, but at a decreasing rate.  Similarly, people tend 

to spend more time at home during the weekend (40-60 minutes).  We find that ill and disabled 

individuals do not spend any statistically significant additional time at home.  We do find that 

students, employed individuals, and those with a college degree and beyond spend much less 

time at home.  The estimated coefficient on the indicator for extreme weather conditions 

indicates that individuals spent between 30 and 34 additional minutes at home during an adverse 

weather event. We would expect this effect to provide an approximate upper bound on avoidance 

behaviour to H1N1 because it occurs in situations where individuals have a very strong incentive 
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to stay home. That is, a severe storm effectively forces people to stay indoors whereas they are 

not forced to stay indoors by health risk.  

The ܣܫܦܧܯ coefficient indicates that individuals spent less time at home during the peak 

of the Google flu-related searches. This is not entirely surprising given the divergence between 

public attention to the epidemic and media attention suggested by figure 2. However, this effect 

is not statistically different from zero at the 10% level. In contrast, the statistically significant 

coefficients on ܵܧܵܣܥ suggest that people respond to the objective measure of risk. 

We expect seniors to be more responsive to flu risk because they have a higher 

probability of becoming seriously ill or dying, and because they are less likely to be time 

constrained by work and caring for young children. The ܴܧܦܮܧ variable in model 4 indicates 

that individuals 65 years and older spend 32 additional minutes at home with a 95% confidence 

interval of [12.20, 51.08] regardless of infection risk.  The interaction of ܴܧܦܮܧ with ܵܧܵܣܥ  

suggest that seniors spent an additional 14 [-27.65, 56.23] minutes at home in response to 

increased flu risk during the week with the most confirmed H1N1 cases. However, the 

interaction is not statistically significant, due in part to the smaller number of seniors in the 

ATUS sample, and perhaps because these individuals already spend more time at home creating 

a small margin on which to adjust behavior.   

Model 5 adds an interaction between ܵܧܵܣܥ and whether the respondent spent time with 

their own children at some point during the day. Similar to seniors, young children are more 

susceptible to negative health consequences of contracting the flu. Therefore, we would expect 

their parents to have a greater incentive to take actions to reduce their probability of contracting 

the flu. This intuition is not mirrored by our results. The estimated coefficient is negative. This 

may indicate that parents with young children have less flexibility to adjust their schedules, that 
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they did not perceive the health risks to be heightened, or that having children leads people to 

behaviour fatalistically [1] with respect to flu. 

Model 6 interacts parent’s activities with children and ܵܧܵܣܥ along with a dummy 

variable Saturday.  People spend an average of 54.57 minutes at home on Saturday.  Parents with 

children spend an average of 16.58 additional minutes at home on Saturday whereas individuals 

without children spend 12.64 minutes less at home.  Importantly, interacting parent’s avoidance 

response with Saturday causes the negative coefficient to be statistically insignificant while the 

population average avoidance response is 3.345 per 1000 cases and is statistically significant.  

Therefore, we find no conclusive evidence of additional avoidance behavior by parents with 

children. 

Our model accounts for approximately 20% of the variation in time spent at home 

(ܴଶ ൌ 0.20 in models 3-6).The magnitude and statistical significance of estimates on 

employment, weather, and day of week demonstrate that our covariates capture certain critical 

factors that influence time-use patterns. 

Epidemic Simulations Adjustment 

Laboratory confirmed cases represent only a fraction of total cases suspected in the population 

[2]. Reed et al. [2] estimated that 43,677 laboratory confirmed cases through July 23, 2009 

represented between 1.8 and 5.7 million cases in the population. Using the most conservative 

estimate, we assume that 2.4% of simulated cases are confirmed by laboratory testing. 

Furthermore, confirmed cases are measured at the national level so we extrapolate the simulated 

number of infected individuals (based on Phoenix MSA) to the national level by multiplying 

daily prevalence by 3.47 (9,734 national cases/2,800 Phoenix MSA cases during the peak of the 

epidemic in the third week of October [3]).  The product of the proportion of laboratory-

working paper, in review, please contact authors prior to citing

copyright Bayham and Fenichel, Yale University 2015



 

 

confirmed cases and the proportion of national cases to those reported in Phoenix MSA yields 

߶ ൌ 8.33%. 

Sensitivity of Household Contact Scalar ሺહሻ 

We investigate the sensitivity of our results to the assumption of ߙ ൌ 1 made on the basis of 

empirical studies of household transmission during the 2009 A/H1N1 outbreak.  We re-simulate 

the model assuming ߙ ൌ3 and ߙ ൌ5.  We keep the infectivity parameter constant in each 

simulation ߜ ൌ1.4 103, which prevents the model from generating the number of cases observed 

in the data.  Nevertheless, the simulations provide intuition about the impact of increasingly 

infectious household contacts.  The peak prevalence and attack rates from the avoidance model 

and the empirical PCM model are reported in Supplementary Table S3.    

 As ߙ increases, time spent engaging in household contacts is more infectious in 

households with at least one infected person.  If 3=ߙ, household contacts are three times more 

infectious per minute than public contacts.   The attack rate rises in the simulations with and 

without avoidance to over 80% of the population, but the percent change between the two 

simulations with and without avoidance falls by 7.9 percentage points.  If 5=ߙ, the attack rates 

with and without avoidance reach nearly 100% of the population.  Under such a severe epidemic, 

most households become infectious, which exacerbates the effect of increased infectivity of 

household contacts.   

Probabilistic Contact Matrix (PCM). 

We compare simulated epidemic outcomes in each year 2003-2012 using an age-household size 

model based on PCMs derived from ATUS data.  Following Zagheni et al. [4], let ℓ ∈  denote a ܮ

public location reported in the ATUS.  Public locations include: School; Restaurant or bar; Place 

of worship; Grocery store; Mall and other stores; Gym and Health club; Personal Services e.g., 
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laundry, beauty salon; Public building, library and post office; Public bus; Subway and train; 

Boat and ferry; Airplane; Office building and bank, Factory/Manufacturing center, Hospital and 

health care center, Workplace not elsewhere classified; Public location not elsewhere classified.  

Let ݉ ∈ ሾ0,1440ሿ denote an index of time (minutes in a 24 hour period). Let ݇ ∈ ܲ denote an 

age-household size group (ܲ ൌ{0-4, 5-12, 13-17, 18-24, 25-49, 50-64, 65+}ൈ ሼ1,2,3,4,5ሽ) within 

which all members mix homogeneously. Then ݃௞
ℓ௠ is the number of individuals in age group ݇ 

at location ℓ at minute ݉. The exposure of group ݇ to group ݆ ് ݇ is proportional to the size of 

each population at location ℓ at minute ݉ and is given by 

௞௝ݖ
ℓ௠ ൌ ݃௞

ℓ௠ ൈ
݃௝
ℓ௠

∑ ݃௟
ℓ௠௄

௟
 

The total time of public exposure on an average day between groups ݇ and ݆ at location ℓ 

is ݖ௞௝
ℓ ൌ ∑ ௞௝ݖ

ℓ௠ଵସସ଴
௠ୀ଴  and the total time of exposure between groups ݇ and ݆ at all public locations 

is ݖ௞௝ ൌ ∑ ∑ ௞௝ݖ
ℓ௠ଵସସ଴

௠ୀ଴ℓ∈௅ . The exposure matrix, ࢆ, has dimensions ሺܭ, ,ܭ ,ܮ 1440ሻ and is 

symmetric in ሺܭ,  ሻ-space, by construction. The structure of the exposure matrix implies aܭ

symmetric contact matrices such that ݖ௞௝ ൌ ௝ݓ௞௝݌ ൌ  ௞௝ is the contact rate between݌ where	௞ݓ௝௞݌

population ݇ and individual ݆, and ݓ௝ is the population of group ݆	(i.e., a contact between groups 

݇ and ݆ is necessarily a contact between groups ݆ and ݇) [5]. However, the relevant measure is 

the contact between an individual in group ݆ and the whole of population of group ݇. Therefore, 

we divide the columns of the matrix ࢆ by population ݓ௝, given by the sample weights in the 

ATUS, to form the PCM. A column in the PCM sums to the total number of minutes an average 

individual in group ݆ spends in public. All contact matrices and the code written to generate them 

in Matlab are available upon request from the authors.  
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The ATUS surveys a subset of respondents to the Current Population Survey (CPS), 

which interviews only individuals older than 15 years.  However, ATUS asks respondents to 

report information on all family members and whether any family members were present during 

an activity.  We use the activity and location information on children with their parents (primary 

ATUS respondents) in public to construct a partial measurement of children’s public contact 

patterns.  Children younger than 13 years old are rarely in public microenvironments without an 

adult (see Supplementary Figure S2).  School contacts are largely omitted from this calculation 

because parents generally leave their children at school for long periods during the weekday.  

The National Health and Activity Patterns Survey (NHAPS) was conducted from 1992-1994 and 

collected time use information on children by microenvironment (e.g., school, home) at minute 

resolution.  We use the NHAPS to construct children’s contact patterns at school.  We then 

derive an index for children’s time at school based on 15-17 year olds from the ATUS and use 

that index to rescale school contact patterns from the NHAPS.  The base of the index is the 

average time spent at school from 2003-2012 omitting 2009.  The index is constructed separately 

for the pre-outbreak and outbreak periods.  Indices are created for each bootstrap sample and 

used to adjust the contacts at school in each bootstrap simulation. 

Supplementary Figures S3 depict the household and public PCMs during the outbreak 

period averaged across 2003-2012  as heat maps with associated population distributions directly 

above.  Panel a) illustrates the contact patterns by age and household size in the household 

environment.  Segmenting the population by household size allows our population-based model 

to capture intra-household transmission but importantly, prevents inter-household transmission in 

the home environment.  The household PCM clearly shows interaction between children and 

their parents or guardians in households of three or more, and strong affinity mixing between 
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adults in two-person households.  The contact with children in single-person households is a 

result of children visiting parents in cases where the children do not live with the parent surveyed 

regularly. The population density just above the heat map shows that this population is small, so 

that this contact time has almost no impact on the simulation results.   

Panel b) illustrates that contact time in public are heterogeneous across age groups.  

Adults primarily contact other adults in public, especially those in smaller households.  Children, 

who are generally in households with three or more people, experience most of their contact time 

with other children at school.  Together, the household and public PCMs capture a rich set of 

epidemiologically meaningful contact patterns. 

Sampling Uncertainty 

Like any sampling method, the ATUS samples include uncertainty, which we propagate through 

our simulations. In the main text, we illustrate sample uncertainty with 95% confidence bars 

around cumulative attack rate in Figure 2.  In Supplementary Figure S4, we illustrate the 

sampling uncertainty associated with the 2009 ATUS survey data during the outbreak period 

(panel A) and pre-outbreak period (panel B) on each day of the epidemic (daily frequency). 

During the outbreak period (panel A), the peak prevalence of the epidemic curve based on the 

average PCM lies outside of the 95% confidence interval of the 2009 epidemic curve.  This 

figure suggests that our result is not due to sampling uncertainty in the ATUS.  In contrast, panel 

B illustrates that the 2009 and average epidemic curves are statistically indistinguishable during 

the pre-outbreak period.   

Supplementary Figure S4 shows that the sampling errors are asymmetric near the peak 

prevalence. The pattern of uncertainty is consistent across both simulations because of the 

mechanics of the model and the source of the uncertainty. We hold the contact matrix constant 
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during each simulation. When a particular Monte Carlo sample from the ATUS yields a contact 

matrix with high contact minutes (i.e., respondents that happen to collocate more frequently), the 

simulated epidemic will spread through the population faster and the peak prevalence will occur 

earlier. This approach accounts for sampling uncertainty in the ATUS but not the stochastic 

variation in day-to-day contacts within the data. We find that stochastic variation in day-to-day 

contacts is very minimal and yields simulation results nearly identical to those based on the PCM 

held constant across the simulation.  The Matlab code and bootstrap simulation data are available 

upon request.  

  

working paper, in review, please contact authors prior to citing

copyright Bayham and Fenichel, Yale University 2015



 

 

References 

1. Kremer, M. 1996 Integrating Behavioral Choice into Epidemiological Models of AIDS. The 
Quarterly Journal of Economics 111, 549–573. (doi:10.2307/2946687) 

2. Reed, C., Angulo, F. J., Swerdlow, D. L., Lipsitch, M., Meltzer, M. I., Jernigan, D. & Finelli, 
L. 2009 Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 
2009. Emerging Infectious Diseases 15, 2004–2007. (doi:10.3201/eid1512.091413) 

3. Arizona Department of Health Services In press. Arizona - Weekly Influenza Summary 
MMWR Week 31-32 (August 1, 2010 - August 14, 2010).  

4. Zagheni, E., Billari, F. C., Manfredi, P., Melegaro, A., Mossong, J. & Edmunds, W. J. 2008 
Using Time-Use Data to Parameterize Models for the Spread of Close-Contact Infectious 
Diseases. Am. J. Epidemiol. 168, 1082–1090. (doi:10.1093/aje/kwn220) 

5. Wallinga, J., Teunis, P. & Kretzschmar, M. 2006 Using Data on Social Contacts to Estimate 
Age-specific Transmission Parameters for Respiratory-spread Infectious Agents. Am. J. 
Epidemiol. 164, 936–944. (doi:10.1093/aje/kwj317) 

 

 

  

working paper, in review, please contact authors prior to citing

copyright Bayham and Fenichel, Yale University 2015



 

 

Supplementary Table S1. Summary Statistics  
  Mean St. Dev. min max 
Time at Home (Minutes) 412.445 238.824 0 1400 
CASES (1000) 0.729 1.660 0 9.735 
Age (Years) 45.867 17.512 0 85 
MEDIA (index 0-1) 0.027 0.087 0 1 

 
Frequency Tables 

Regression Variables PCM Variables 
Male 43.1% Age: 
Race:    0-4 7%

White 81.4%    5-12 11%
Black 13.3%    13-17 7%
Other Race 5.3%    18-24 9%

Hispanic 13.1%    25-49 35%
Partner Present 52.8%    50-64 18%
Education:    65+ 13%

Less than College 38.4% Household Size: 
College Degree 48.9%    One 11%
Advanced Degree 12.7%    Two 26%

Current Student 11.0%    Three 18%
Currently Employed 63.1%    Four 23%
Manual Labor 7.8%    Five or more 20%
Ill/Disabled  0.3%
Extreme Weather 1.3%
Survey Day: 

Holiday 1.6%
Monday 9.3%
Tuesday 9.2%
Wednesday 9.4%
Thursday 9.6%
Friday 9.9%
Saturday 26.0%
Sunday 26.6%       
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Supplementary Table S2. Fixed effect regression results for time spent at home.   
State fixed effects x x  x  x  x 

Month fixed effects x x  x  x  x 

Month*State fixed effects       x x x x 

 Coefficient Estimates of fixed effects models 

  (1) (2) (3) (4) (5) (6) 

CASES (1000) 1.663* 2.378** 2.379** 2.114* 3.357*** 3.345*** 
(0.944) (1.057) (1.072) (1.129) (1.219) (1.218) 

Elderly (65+ yrs) 31.64***  
(7.924)  

CASES *Elderly 1.468  
(2.198)  

Child (<18 yrs) 15.50*** 16.58*** 
(3.490) (3.927) 

Child*Saturday  -12.64** 
 (6.369) 

No Child*Saturday      16.58*** 
      (3.927) 
CASES*Child     -3.263* -2.084 
     (1.690) (1.867) 
CASES*Child*Saturday      -3.809 
      (3.084) 
MEDIA -22.33 -15.02 -17.66 -17.17 -17.06 -16.80 

(18.98) (19.61) (20.10) (20.07) (20.12) (20.11) 
Extreme Weather 30.88*** 33.54*** 34.47*** 34.36*** 34.46*** 34.52*** 

(11.97) (11.95) (12.20) (12.20) (12.21) (12.21) 
Holiday 5.931 5.240 6.910 7.029 5.237 5.757 

(11.93) (11.96) (11.93) (11.93) (11.96) (11.95) 
Tuesday -6.286 -6.418 -5.172 -5.202 -5.240 -5.194 

(5.805) (5.792) (5.875) (5.871) (5.867) (5.867) 
Wednesday -11.51** -11.67** -10.72* -10.71* -10.76* -10.66* 

(5.738) (5.730) (5.818) (5.817) (5.809) (5.809) 
Thursday -19.65*** -19.25*** -18.20*** -18.38*** -18.46*** -18.47*** 

(5.696) (5.680) (5.786) (5.784) (5.779) (5.778) 
Friday -16.08*** -16.08*** -14.60** -14.66** -15.16*** -15.20*** 
 (5.728) (5.708) (5.797) (5.796) (5.795) (5.796) 
Saturday 41.23*** 41.49*** 41.27*** 41.25*** 39.76*** 54.57*** 
 (4.972) (4.957) (5.024) (5.022) (5.042) (6.711) 
Sunday 59.69*** 60.07*** 59.70*** 59.66*** 57.87*** 57.59*** 
 (4.835) (4.818) (4.892) (4.891) (4.919) (4.927) 
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Supplementary Table S2 cont. Fixed effect regression results for time spent at home.   
State fixed effects x x  x  x  x 

Month fixed effects x x  x  x  x 

Month*State fixed effects       x x x x 

 Coefficient Estimates of fixed effects models 

  (1) (2) (3) (4) (5) (6) 

College Degree -5.780* -5.493* -5.707* -6.141* -5.773* -5.797* 
(3.123) (3.101) (3.152) (3.154) (3.151) (3.151) 

Advanced Degree -20.75*** -19.84*** -21.74*** -22.22*** -21.96*** -21.97*** 
(4.563) (4.527) (4.612) (4.612) (4.612) (4.612) 

Hispanic -13.37*** -14.79*** -13.83*** -14.12*** -14.66*** -14.71*** 
(4.222) (3.899) (4.266) (4.266) (4.271) (4.271) 

White -6.797 -4.978 -7.507 -7.540 -7.311 -7.349 
(6.251) (6.080) (6.278) (6.277) (6.276) (6.276) 

Black -24.03*** -23.43*** -25.36*** -25.29*** -24.86*** -24.93*** 
(7.280) (7.049) (7.308) (7.306) (7.305) (7.306) 

Ill/Disabled -8.718 -6.528 -12.42 -10.82 -13.10 -13.17 
 (23.10) (23.02) (22.81) (22.89) (22.89) (22.88) 
Age 4.229*** 4.191*** 4.234*** 5.637*** 4.109*** 4.105*** 
 (0.484) (0.483) (0.488) (0.582) (0.490) (0.490) 
Age2 -0.019*** -0.018*** -0.019*** -0.038*** -0.016*** -0.016*** 
 (0.005) (0.005) (0.005) (0.007) (0.005) (0.005) 
Male -18.70*** -18.73*** -18.86*** -18.76*** -17.26*** -17.18*** 

(2.787) (2.783) (2.809) (2.808) (2.833) (2.834) 
Employed -144.5*** -144.6*** -144.5*** -143.8*** -143.7*** -143.7*** 
 (3.367) (3.358) (3.391) (3.396) (3.396) (3.395) 
Manual Labor -0.496 -1.209 -1.331 -1.311 -1.326 -1.407 
 (5.306) (5.290) (5.394) (5.395) (5.393) (5.391) 
Student -34.36*** -34.70*** -35.69*** -33.42*** -33.79*** -33.85*** 
 (5.267) (5.282) (5.368) (5.390) (5.375) (5.376) 
Partner 42.99*** 43.04*** 43.20*** 42.27*** 40.33*** 40.38*** 
 (2.942) (2.935) (2.961) (2.968) (3.049) (3.050) 
Constant 335.1*** 355.6*** 357.9*** 333.7*** 355.0*** 354.9*** 
 (17.15) (13.47) (47.07) (47.45) (47.17) (47.26) 
            

            

R2 0.176 0.176 0.195 0.196 0.196 0.196 
Observations 27,091 27,091 27,091 27,091 27,091 27,091 
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Supplementary Table S3.  Sensitivity of results from homogeneous mixing model and heterogeneous 
age-household size model.  All peak prevalence and attack rate results are in percent. 
Result ߙ ൌ1 95% CI ߙ ൌ3 95% CI ߙ ൌ5 95% CI 
Homogeneous mixing model    
Peak Prev. w/ Av. 2.9 (2.18, 3.91)  14.93  (7.57, 19.82)  55.25  (46.51, 62.09)  
Peak Prev. w/o Av. 4.22 - 20.34 - 44.16 - 
% Change Peak Prev 31.2  (7.46, 48.27)  26.58  (2.56, 62.76)  -25.1  (-40.59, -5.30)  
Atk. Rt. w/ Av. 42.22  (37.46, 48.29) 82.66  (65.49, 89.45)  99.98  (99.81, 100.00) 
Atk. Rt. w/o Av. 50 - 89.5 - 99.59 - 
% Change Atk. Rt. 15.55 (3.42, 25.07)  7.65  (0.06, 26.83)  -0.39  (-0.41, -0.22)  
      
Age-household size model 
Pre-Outbreak Period      
Peak Prev. 2009 4.16  (2.82, 5.70)  17.94  (12.46, 22.49)  38.3  (35.26, 40.73)  
Peak Prev. Avg 3.71  (3.41, 4.01)  16.61  (15.24, 17.92)  38.18  (37.06, 39.20)  
Attack Rate 2009 45.45  (38.66, 51.93) 83.14  (75.02, 87.82)  94.58  (94.02, 95.13)  
Attack Rate Avg 43.8  (42.32, 45.23) 82.27  (80.41, 83.93)  94.94  (94.76, 95.13)  
Outbreak Period      
Peak Prev. 2009 2.52  (1.81, 3.32)  11.33  (6.83, 15.92)  35.72  (33.12, 38.03)  
Peak Prev. Avg 3.76  (3.53, 4.00)  16.76  (15.87, 17.70)  38.37  (37.36, 39.21)  
Attack Rate 2009 36.48  (31.62, 41.45) 71.86  (59.67, 81.07)  94.02  (93.43, 94.52)  
Attack Rate Avg 43.81  (42.70, 44.91) 82.46  (81.21, 83.65)  95  (94.88, 95.13)  
Difference 2009 8.97  (2.03, ~)  11.29  (1.65, ~)  0.57  (-0.06, ~)  
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Supplementary Figure S1. Weekly number of CDC reported cases of H1N1 (dashed blue) and 
Google search volume index (solid red) over the outbreak period April 20, 2009 – December 20, 
2009. The horizontal axis displays dates in one week increments with the starting date in the 
format “mm/dd”.  
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Supplementary Figure S2. Comparison of time spent in public using the NHAPS data from 
1992-1994 and children reported with primary ATUS respondents (age 15 and older).  

 
 

           

 
 a) Household  b) Public 
 
Supplementary Figure S3. Household and public PCMs with empirical population distributions 
above.  Dark lines denote the five household size groups.  Each household size category consists 
of the seven age groups for a total of 35 demographically meaningful groups (ܲ ൌ{0-4, 5-12, 13-
17, 18-24, 25-49, 50-64, 65+}ൈ{1,2,3,4,5+}), note these bins are not of equal width.  A cell 
represents the number of contact minutes an individual in group ݅ interacts with the population of 
group ݆.  The vertical sum of cells in a single column is equal to an individual’s total contact 
minutes. The vertical axis of the population distribution (bar chart) is group ݅ percent of the 
population. Note, these are the transpose of ࡯ described in the main text. 
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Supplementary Figure S4. Simulated epidemic curves based on contact matrices for 2009 
(solid blue) and the average of all non-2009 years (dashed red) during the outbreak period (panel 
A) and the pre-outbreak period (panel B). The bars represent the bootstrap 95% confidence 
interval of the 2009 curve.  
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