Motivation
Motivation

<table>
<thead>
<tr>
<th>Year</th>
<th>Unemployment Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>3%</td>
</tr>
<tr>
<td>1984</td>
<td>5%</td>
</tr>
<tr>
<td>1994</td>
<td>7%</td>
</tr>
<tr>
<td>2004</td>
<td>9%</td>
</tr>
<tr>
<td>2014</td>
<td>11%</td>
</tr>
</tbody>
</table>

Potential Causes:
- Technology?
- Aggregate demand?
- Mismatch?
- Low job search?
- Low participation?
Motivation

- 1974
- 1984
- 1994
- 2004
- 2014

Unemployment rate

- Technology?
- Aggregate demand?
- Mismatch?
- Low job search?
- Low participation?
- Monetary policy?
- Unemployment insurance?
- Payroll tax?
- Nothing?
- Transfers?
The available models

1. matching model of the labor market
 - tractable
 - but no aggregate demand

2. ?

3. New Keynesian DSGE model
 - many shocks
 - but greater complexity
The general disequilibrium model?

- vast literature after Barro & Grossman [1971]
- recent revival after Great Recession
 - Mankiw & Weinzierl [2011]
 - Caballero & Farhi [2014]
- captures important intuitions
- but difficult to analyze
This model

equilibrium version of the Barro-Grossman model, with matching frictions on product + labor markets:

- graphical representation of GE and welfare
- frictional + classical + Keynesian unemployment
Basic model (no labor market)
Setup

- static model
- measure 1 of identical households
- production takes place within households
- households cannot consume own production
- households trade production on frictional market
Matching function and tightness

\[k \text{ units of produced good} \]

\[\nu \text{ visits} \]
Matching function and tightness

- Visits v
- Capacity k
- Sales
- Purchases
- CRS matching function $h(k,v)$
Matching function and tightness

sales = \(k \cdot h(1, x) = k \cdot f(x) \)

output: \(y = h(k, \nu) \)

purchases = \(\nu \cdot h\left(\frac{1}{x}, 1\right) = \nu \cdot q(x) \)

visits \(\nu \)

capacity \(k \)

tightness: \(x = \nu / k \)
Low product market tightness
High product market tightness
Matching cost: ρ goods per visit

- output $= \left[1 + \tau(x)\right] \cdot \text{consumption}$

- proof:

\[
\begin{align*}
y & = c + \rho \cdot \frac{y}{q(x)} \\
\Rightarrow y \cdot \left[1 - \frac{\rho}{q(x)}\right] & = c \\
\Rightarrow y & = \left[1 + \frac{\rho}{q(x) - \rho}\right] \cdot c \equiv \left[1 + \tau(x)\right] \cdot c
\end{align*}
\]
Tightness and aggregate supply

product market tightness x

capacity: k

quantity of produced good
Tightness and aggregate supply

\[y = f(x) \]

output: \(y = f(x) \) k

product market tightness \(x \)

quantity of produced good

capacity \(k \)
Tightness and aggregate supply

\[c = \frac{f(x) \cdot k}{1 + \tau(x)} = [f(x) - \rho \cdot x] \cdot k \]
Tightness and aggregate supply

tightness of the product market x

aggregate supply c

output y

capacity k

consumption

trading cost

idle time

quantity of produced good

Tightness and aggregate supply

C_1onsumption

C_2ommodity C_1

C_3apacity C_1
Nonproduced good

■ valued by consumers
■ in fixed supply
■ traded on a perfectly competitive market
■ examples: real money, land, gold, fixed capital
■ as in Barro & Grossman [1971], Hart [1982], and Blanchard & Kiyotaki [1987]
Households

- take price p and tightness x as given
- choose c, m to maximize utility

$$\left(\frac{\chi}{1 + \chi} \cdot \frac{\varepsilon - 1}{\varepsilon} + \frac{1}{1 + \chi} \cdot \frac{\varepsilon - 1}{\varepsilon} \right)$$

subject to budget constraint

$$m \underbrace{+ p \cdot (1 + \tau(x)) \cdot c = \mu + f(x) \cdot p \cdot k}_{\text{numeraire, produced good, endowment, labor income}}$$
Optimal consumption decision

■ first-order condition

\[
\left(1 + \tau(x)\right) \cdot p \cdot \frac{1}{1 + \chi} \cdot m^{-\frac{1}{\varepsilon}} = \frac{\chi}{1 + \chi} \cdot c^{-\frac{1}{\varepsilon}}
\]

■ aggregate demand (as \(m = \mu\)):

\[
c^d(x, p) = \frac{\chi^\varepsilon \cdot \mu}{\left(1 + \tau(x)\right)^\varepsilon \cdot p^\varepsilon}
\]
Tightness and aggregate demand

\[c^d(x, p) = \frac{\chi^\epsilon \cdot \mu}{(1 + \tau(x))^\epsilon \cdot p^\epsilon} \]
Definition of equilibrium

- equilibrium is \((x, p)\) such that supply = demand:

\[c^s(x) = c^d(x, p) \]

- 1 equation, 2 variables: indeterminacy
- need a price mechanism to select equilibrium
 - fixed price
 - efficient price
Comparative statics

with fixed price and efficient price
Increase in AD with fixed price

product market tightness \(x \)

quantity

output \(y \)

capacity \(k \)

equilibrium

AS

AD
Increase in AD with fixed price

product market tightness x

output y
capacity k

quantity

AS

AD
Increase in AS with fixed price
Comparative statics with fixed price

<table>
<thead>
<tr>
<th>increase in:</th>
<th>effect on:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>output</td>
<td>tightness</td>
</tr>
<tr>
<td>aggregate demand</td>
<td>y</td>
<td>$+$</td>
</tr>
<tr>
<td>aggregate supply</td>
<td>$+$</td>
<td>$-$</td>
</tr>
</tbody>
</table>
Definition of efficient price

A diagram shows the relationship between product market tightness (x) and consumption (c). The graph includes an AS curve and an AD curve, intersecting at a point labeled as slack equilibrium. An annotation indicates that the price is too high at this point.
Definition of efficient price

product market tightness x

consumption c

AS AD

tight equilibrium

price is too low

c^* x^*
Definition of efficient price

Product market tightness x vs. consumption c.

- Efficient equilibrium is marked by the intersection of the demand (AD) and supply (AS) curves.
- The price is efficient at this point.

$$c^* \quad x^*$$
Comparative statics with efficient price

<table>
<thead>
<tr>
<th>increase in:</th>
<th>effect on:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>output</td>
</tr>
<tr>
<td>aggregate demand</td>
<td>0</td>
</tr>
<tr>
<td>aggregate supply</td>
<td>+</td>
</tr>
</tbody>
</table>
Complete model
Labor market and unemployment

Labor supply n employment l labor force h

producers

recruiters

unemployment

labor market tightness θ

number of workers
Firms

- employ producers and recruiters and sell production
- take real wage w and tightnesses x and θ as given
- choose number of producers n to maximize profits

\[
\begin{align*}
 f(x) \cdot a \cdot n^\alpha - [1 + \hat{\tau}(\theta)] \cdot w \cdot n
\end{align*}
\]

- selling probability
- production
- wage of producers + recruiters
Optimal employment decision

- first-order condition:

\[f(x) \cdot \alpha \cdot a \cdot n^{\alpha - 1} = \left[1 + \hat{\tau}(\theta) \right] \cdot w \]

- selling probability
- MPL
- matching wedge
- real wage

- labor demand: demand for producers

\[n^d(\theta, x, w) = \left[\frac{f(x) \cdot a \cdot \alpha}{(1 + \hat{\tau}(\theta)) \cdot w} \right]^{\frac{1}{1 - \alpha}} \]
Partial equilibrium on labor market

- Labor supply
- Employment l
- Labor force h
- Labor market tightness θ
- Partial equilibrium
- Labor demand

Diagram showing the relationship between labor supply, employment, labor force, labor market tightness, and the number of workers.
General equilibrium \((x, \theta, p, w)\)

- supply = demand on product and labor markets

\[
\begin{align*}
 c^s(x, \theta) &= c^d(x, p) \\
 n^s(\theta) &= n^d(\theta, x, w)
\end{align*}
\]

- 2 equations, 4 variables: indeterminacy

- need price and wage mechanisms
Keynesian, classical, and frictional unemployment

- equilibrium employment:

\[l = \left(\frac{f(x) \cdot a \cdot \alpha}{w} \right)^{\frac{1}{1-\alpha}} \cdot \left(\frac{1}{1 + \hat{\tau}(\theta)} \right)^{\frac{\alpha}{1-\alpha}} \]

- frictional unemployment from \(\hat{\tau}(\theta) > 0 \)
- classical unemployment from \(w > a \cdot \alpha \)
- Keynesian unemployment from \(f(x) < 1 \)
Comparative statics with fixed prices

<table>
<thead>
<tr>
<th>increase in:</th>
<th>effect on:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>product</td>
<td>labor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>output</td>
<td>tightness</td>
<td>tightness</td>
<td>employment</td>
</tr>
<tr>
<td>aggregate demand</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>technology</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>labor supply</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>mismatch</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Comparative statics with fixed prices

<table>
<thead>
<tr>
<th>increase in:</th>
<th>effect on:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>product</td>
</tr>
<tr>
<td></td>
<td>output</td>
</tr>
<tr>
<td>aggregate demand</td>
<td>y</td>
</tr>
<tr>
<td>technology</td>
<td>$+$</td>
</tr>
<tr>
<td>labor supply</td>
<td>$+$</td>
</tr>
<tr>
<td>mismatch</td>
<td>$-$</td>
</tr>
</tbody>
</table>
Comparative statics with efficient prices

<table>
<thead>
<tr>
<th>increase in:</th>
<th>effect on:</th>
<th>product</th>
<th>labor</th>
<th>employment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>output</td>
<td>tightness</td>
<td>tightness</td>
</tr>
<tr>
<td>aggregate demand</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>technology</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>labor supply</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mismatch</td>
<td>−</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Rigid or flexible prices?
Construct proxy for product market tightness from capacity utilization measure in Survey of Plant Capacity:
Fluctuations in product market tightness: rigid price
Fluctuations in labor market tightness: rigid real wage
Effect of labor supply and demand shocks

- labor supply shocks: negative correlation between employment and labor market tightness
- labor demand shocks: positive correlation between employment and labor market tightness
Evidence of labor demand shocks

Labor market tightness (left scale)

Employment (right scale)
Cross-correlogram: labor market tightness and employment
Labor demand shocks:
AD or technology shocks?
Effect of AD and technology shocks

- **AD** shocks: *positive* correlation between output and product market tightness
- **technology** shocks: *negative* correlation between output and product market tightness
Evidence of AD shocks
Cross-correlogram: product market tightness and output
Conclusion

- tractable model of unemployment fluctuations
- empirical series to measure tightness
 - product market tightness
 - labor market tightness
- origins of unemployment fluctuations
 1. importance of price and wage rigidity (not flexibility)
 2. importance of labor demand shocks (not labor supply)
 3. importance of AD shocks (not technology)