Optimal Policy under Dollar Pricing

Konstantin Egorov
kegorov@NES.ru

Dmitry Mukhin
dmukhin@WISC.edu

Cambridge-INET Conference
December 1, 2020
“Dominant currency paradigm”

— world prices set in dollars (Goldberg-Tille'08)
— world prices sticky in dollars (Gopinath'15)
— asymmetric transmission of shocks (Gopinath et al’20)
Motivation

“Dominant currency paradigm”

— world prices **set in dollars** (Goldberg-Tille’08)
— world prices **sticky in dollars** (Gopinath’15)
— asymmetric transmission of shocks (Gopinath et al’20)

What is the optimal policy under DCP?

1. **float vs. peg?** (Friedman’53)
2. **capital controls?** (Blanchard’17)
3. **gains from cooperation? from currency areas?** (Mundell’61)
4. **Fed’s policy?** (Bernanke’17, Obstfeld’19)
5. **exorbitant privilege?** (Gourinchas-Rey’07)

Relevant from both normative and positive perspectives

— can DCP rationalize policies followed by open economies?
Motivation

“Dominant currency paradigm”

- world prices set in dollars (Goldberg-Tille’08)
- world prices sticky in dollars (Gopinath’15)
- asymmetric transmission of shocks (Gopinath et al’20)

What is the optimal policy under DCP?

1. float vs. peg? (Friedman’53)
2. capital controls? (Blanchard’17)
3. gains from cooperation? from currency areas? (Mundell’61)
4. Fed’s policy? (Bernanke’17, Obstfeld’19)
5. exorbitant privilege? (Gourinchas-Rey’07)

Relevant from both normative and positive perspectives

- can DCP rationalize policies followed by open economies?
This Paper

- New Keynesian open economy model
This Paper

- New Keynesian open economy model

- **Key ingredients:**
 - exporters use DCP
 - local firms use PCP
This Paper

- New Keynesian open economy model

- **Key ingredients:**
 - exporters use DCP \[\Rightarrow\] high ERPT into *border* prices
 - local firms use PCP
 - foreign intermediates \[\Rightarrow\] low ERPT into *retail* prices

Otherwise general setup:
- arbitrary assets, preferences, technology, nominal rigidities, shocks
- fully non-linear stochastic solution

Main findings:
1. optimality of inflation targeting for non-U.S. economies
2. partial peg to the dollar and global monetary cycle
3. no case for capital controls
4. conflict of interests between the U.S. and RoW
New Keynesian open economy model

Key ingredients:
- Exporters use DCP ⇒ high ERPT into border prices
- Local firms use PCP
- Foreign intermediates ⇒ low ERPT into retail prices

Otherwise general setup:
- Arbitrary assets, preferences, technology, nominal rigidities, shocks
- Fully non-linear stochastic solution

Main findings:
1. Optimality of inflation targeting for non-U.S. economies
2. Partial peg to the dollar and global monetary cycle
3. No case for capital controls
4. Conflict of interests between the U.S. and RoW
New Keynesian open economy model

Key ingredients:
- exporters use DCP \Rightarrow high ERPT into border prices
- local firms use PCP \Rightarrow low ERPT into retail prices
- foreign intermediates

Otherwise general setup:
- arbitrary assets, preferences, technology, nominal rigidities, shocks
- fully non-linear stochastic solution

Main findings:
1. optimality of inflation targeting for non-U.S. economies
2. partial peg to the dollar and global monetary cycle
3. no case for capital controls
4. conflict of interests between the U.S. and RoW
Relation to the Literature

- **Empirical evidence:**
 - prices are sticky in dollars: Goldberg & Tille (2008), Gopinath & Rigobon (2008), Gopinath, Itskhoki & Rigobon (2010), Gopinath (2016)

- **Theories of currency choice:**

- **Optimal policy in open economy:**
 - much more general setup, different intuition, new results... cf
SETUP
Setup

- Infinite-horizon model w/ continuum of SOEs (Gali-Monacelli’2005)
 - U.S. is symmetric except for DCP
Setup

- Infinite-horizon model w/ continuum of SOEs (Gali-Monacelli’2005)
 - U.S. is symmetric except for DCP

- Households:
 - demand for products, labor supply and risk-sharing
 - nested CES w/ macro elasticity θ, micro elasticity ε, home bias $1 - \gamma$

- Firms:
 - CRS production from labor and intermediates
 - Rotemberg price setting: PCP in local market + DCP in exports

Lemma: the flexible-price equilibrium:
(a) is efficient from the perspective of individual economy,
(b) can be implemented under PCP by targeting $\pi_{it} = 0$.
Setup

- Infinite-horizon model w/ continuum of SOEs (Gali-Monacelli’2005)
 - U.S. is symmetric except for DCP

- **Households:**
 - demand for products, labor supply and risk-sharing
 - nested CES w/ macro elasticity θ, micro elasticity ε, home bias $1 - \gamma$

- **Firms:**
 - CRS production from labor and intermediates
 - Rotemberg price setting: PCP in local market + DCP in exports

- To isolate new policy motives assume:

 A1: production subsidies $\tau_i = \frac{\varepsilon-1}{\varepsilon}$, $\tau_i^* = 1$ and no markup shocks

 \Rightarrow eliminate monopolistic distortion and the terms-of-trade externality

 A2: payoffs of assets D^h_t are independent from monetary policies

 \Rightarrow monetary policy does not aim to complete asset markets
Setup

- Infinite-horizon model w/ continuum of SOEs (Gali-Monacelli’2005)
 - U.S. is symmetric except for DCP

- Households:
 - demand for products, labor supply and risk-sharing
 - nested CES w/ macro elasticity θ, micro elasticity ε, home bias $1 - \gamma$

- Firms:
 - CRS production from labor and intermediates
 - Rotemberg price setting: PCP in local market + DCP in exports

- To isolate new policy motives assume:

 A1: production subsidies $\tau_i = \frac{\varepsilon - 1}{\varepsilon}, \quad \tau_i^* = 1$ and no markup shocks

 \Rightarrow eliminate monopolistic distortion and the terms-of-trade externality

 A2: payoffs of assets D_t^h are independent from monetary policies

 \Rightarrow monetary policy does not aim to complete asset markets

- **Lemma**: the flexible-price equilibrium

 (a) is efficient from the perspective of individual economy,

 (b) can be implemented under PCP by targeting $\pi_{iit} = 0$.
OPTIMAL NON-U.S. POLICY
Proposition (Non-U.S. policy)

The optimal monetary policy in a non-U.S. economy stabilizes prices of domestic producers $\pi_{iit} = 0$. The resulting allocation is not efficient.
Optimal Policy

Proposition (Non-U.S. policy)

The optimal monetary policy in a non-U.S. economy stabilizes prices of domestic producers $\pi_{iit} = 0$. The resulting allocation is not efficient.

Optimal policy can be summarized with a simple “sufficient statistic”

— invariant to parameters/details of the model
Proposition (Non-U.S. policy)

The optimal monetary policy in a non-U.S. economy stabilizes prices of domestic producers $\pi_{iit} = 0$. The resulting allocation is not efficient.

1. Optimal policy can be summarized with a simple “sufficient statistic”
 - invariant to parameters/details of the model

2. PPI vs. CPI: target prices that are sticky in local currency
 - may include retail prices of imported goods
Proposition (Non-U.S. policy)

The optimal monetary policy in a non-U.S. economy stabilizes prices of domestic producers $\pi_{iit} = 0$. The resulting allocation is not efficient.

1. Optimal policy can be summarized with a simple “sufficient statistic”
 — invariant to parameters/details of the model

2. PPI vs. CPI: target prices that are sticky in local currency
 — may include retail prices of imported goods

3. Same optimal policy as under PCP despite inefficient outcome:
 — PCP: given export prices, MP achieves optimal exports $Y_{it}^* = h_t(P_{iit}/E_{it})$
 — DCP: given export prices, MP cannot affect exports $Y_{it}^* = h_t(P_{it}^*)$
 — Lemma: decentralized export prices are constrained efficient under DCP
Optimal Policy

Proposition (Non-U.S. policy)

The optimal monetary policy in a non-U.S. economy stabilizes prices of domestic producers $\pi_{iit} = 0$. The resulting allocation is not efficient.

1. Optimal policy can be summarized with a simple “sufficient statistic”
 — invariant to parameters/details of the model

2. PPI vs. CPI: target prices that are sticky in local currency
 — may include retail prices of imported goods

3. Same optimal policy as under PCP despite inefficient outcome:
 — PCP: given export prices, MP achieves optimal exports $Y_{it}^* = h_t(P_{iit}/E_{it})$
 — DCP: given export prices, MP cannot affect exports $Y_{it}^* = h_t(P^*_{it})$
 — Lemma: decentralized export prices are constrained efficient under DCP

4. Policy is robust to endogenous currency choice
Global Monetary Cycle

- Does targeting $\pi_{iit} = 0$ mean the optimal policy is *inward-looking*?
 - yes in CP’2007, DSX’2007, GT’2009, CDGG’2018
Global Monetary Cycle

- Does targeting $\pi_{iit} = 0$ means the optimal policy is *inward-looking*?
 - yes in CP’2007, DSX’2007, GT’2009, CDGG’2018

- **Corollary**: The optimal policy is generically *outward-looking*

\[i_{US} \uparrow \Rightarrow \varepsilon_{it} \uparrow \Rightarrow \begin{cases}
 P_{it} \uparrow \Rightarrow \{ \text{intermediates} \} \Rightarrow MC_{it} \uparrow \Rightarrow i_{it} \uparrow
\end{cases} \]
Global Monetary Cycle

- Does targeting $\pi_{iit} = 0$ means the optimal policy is *inward-looking*?
 - yes in CP’2007, DSX’2007, GT’2009, CDGG’2018

- **Corollary**: The optimal policy is generically *outward-looking*

$$\text{if } i_{US} \uparrow \Rightarrow E_{it} \uparrow \Rightarrow \begin{cases} P_{it} \uparrow \Rightarrow \{\text{intermediates}\} \Rightarrow MC_{it} \uparrow \Rightarrow i_{it} \uparrow \\ Y^*_it \downarrow \Rightarrow \{\text{convex costs}\} \Rightarrow MC_{it} \downarrow \Rightarrow i_{it} \downarrow \end{cases}$$
Global Monetary Cycle

Does targeting $\pi_{iit} = 0$ means the optimal policy is inward-looking?

— yes in CP’2007, DSX’2007, GT’2009, CDGG’2018

Corollary: The optimal policy is generically outward-looking

\[i_{US}t \uparrow \Rightarrow E_{it} \uparrow \Rightarrow \begin{cases} P_{it} \uparrow \Rightarrow \{\text{intermediates}\} \Rightarrow MC_{it} \uparrow \Rightarrow i_{it} \uparrow \\
Y^{*}_{it} \downarrow \Rightarrow \{\text{convex costs}\} \Rightarrow MC_{it} \downarrow \Rightarrow i_{it} \downarrow \end{cases} \]

i) Global Monetary Cycle: all countries respond to U.S. shocks

— higher pass-through in countries with more DCP

— Zhang’2018
Global Monetary Cycle

- Does targeting $\pi_{iit} = 0$ mean the optimal policy is *inward-looking*?
 - yes in CP’2007, DSX’2007, GT’2009, CDGG’2018

- **Corollary**: The optimal policy is generically *outward-looking*

 $$i_{Us} \uparrow \Rightarrow E_{it} \uparrow \Rightarrow \begin{cases} P_{it} \uparrow \Rightarrow \{\text{intermediates}\} \Rightarrow MC_{it} \uparrow \Rightarrow i_{it} \uparrow \Rightarrow E_{it} \downarrow \\ Y_{it}^{*} \downarrow \Rightarrow \{\text{convex costs}\} \Rightarrow MC_{it} \downarrow \Rightarrow i_{it} \downarrow \Rightarrow E_{it} \uparrow \end{cases}$$

i) **Global Monetary Cycle**: all countries respond to U.S. shocks
 - higher pass-through in countries with more DCP
 ▶ Zhang’2018

ii) **partial peg to the dollar**
 - DCP contributes to the “fear of floating”
 ▶ IRR’2018
Global Monetary Cycle

- Does targeting $\pi_{iit} = 0$ mean the optimal policy is inward-looking?
 - yes in CP’2007, DSX’2007, GT’2009, CDGG’2018

- **Corollary**: The optimal policy is generically outward-looking

 \[i_{US} \uparrow \Rightarrow E_{it} \uparrow \Rightarrow \begin{cases}
P_{it} \uparrow \Rightarrow \{intermediates\} \Rightarrow MC_{it} \uparrow \Rightarrow i_{it} \uparrow \Rightarrow E_{it} \downarrow \\
 Y_{it}^* \downarrow \Rightarrow \{convex \ costs\} \Rightarrow MC_{it} \downarrow \Rightarrow i_{it} \downarrow \Rightarrow E_{it} \uparrow \end{cases} \]

 i) **Global Monetary Cycle**: all countries respond to U.S. shocks
 - higher pass-through in countries with more DCP
 - Zhang’2018

 ii) **partial peg to the dollar**
 - DCP contributes to the “fear of floating”
 - IRR’2018

 iii) **Trilemma**: trade-off is worse under DCP, but fixed ER is suboptimal
ADDITIONAL FISCAL INSTRUMENTS
Can capital controls insulate from U.S. spillovers?

- Blanchard’2017: “the use of capital controls by EMs allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects.”

- Farhi-Werning’2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to "AD externality". Augment monetary policy with state-contingent capital controls.

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.

Optimal subsidy from Farhi-Werning’2016:

$$
\tau_{hit} = P_{iti}C_{Iit}, \bar{\tau}_{iti} > 0
$$

$$
\bar{\tau}_{iti}, \bar{\tau}_{iti} \neq 0 + E_{iti}P^{*}_{iti}C^{*}_{Iit}, \bar{\tau}_{iti} > 0
$$

Corollary: The optimal cooperative capital controls are generically non-zero and target economies that import depressed/overheated goods.
Can capital controls insulate from U.S. spillovers?

— Blanchard’2017: “[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects”

— Farhi-Werning’2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to “AD externality”
Can capital controls insulate from U.S. spillovers?

— Blanchard'2017: “[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects”

— Farhi-Werning'2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to “AD externality”

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.
Can capital controls insulate from U.S. spillovers?

— Blanchard'2017: “[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects”

— Farhi-Werning’2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to “AD externality”

Augment monetary policy with state-contingent capital controls

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.

Optimal subsidy from Farhi-Werning’2016:

\[\tau_{it}^h = P_{iit} C_{iit} \tilde{\tau}_{iit} + \xi_{it} P_{it}^* C_{iit}^* \tilde{\tau}_{it}^* \]
Capital Controls

Can capital controls insulate from U.S. spillovers?

— Blanchard'2017: “[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects”

— Farhi-Werning’2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to “AD externality”

Augment monetary policy with state-contingent capital controls

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.

Optimal subsidy from Farhi-Werning’2016:

\[
\tau_{it}^h = P_{it} \bar{C}_{I,ii} \bar{\tau}_{iit} + \varepsilon_{it} P_{it}^* \bar{C}_{I,ii}^* \bar{\tau}_{it}^*
\]

\[
\begin{align*}
= & 0 & \neq 0
\end{align*}
\]
Can capital controls insulate from U.S. spillovers?

— Blanchard'2017: “[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects”

— Farhi-Werning’2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to “AD externality”

Augment monetary policy with state-contingent capital controls

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.

Optimal subsidy from Farhi-Werning’2016:

$$\tau_{it}^h = P_{iit} C_{I,iit} \bar{\tau}_{iit} + \varepsilon_{it} P_{iit}^* C_{I,iit}^* \bar{\tau}_{iit}^*$$

where:
- P_{iit} and P_{iit}^* are prices
- $C_{I,iit}$ and $C_{I,iit}^*$ are consumption
- ε_{it} is a shock
- $\bar{\tau}_{iit}$ and $\bar{\tau}_{iit}^*$ are state-contingent capital controls
- >0, $=0$, $=0$, $\neq 0$ indicate conditions under which certain terms are active.
Can capital controls insulate from U.S. spillovers?

— Blanchard'2017: “[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects”

— Farhi-Werning’2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to “AD externality”

Augment monetary policy with state-contingent capital controls

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.

Optimal subsidy from Farhi-Werning’2016:

\[\tau_{it}^h = P_{iit} C_{l,iit} \bar{r}_{iit} + \varepsilon_{it} P_{iit}^* C_{l,ii}^* \bar{r}_{iit}^* \]

\[\begin{align*}
&> 0 \quad = 0 \\
&= 0 \quad \neq 0
\end{align*} \]

⇒ capital controls are not a panacea against all kinds of foreign spillovers
Can capital controls insulate from U.S. spillovers?

— Blanchard'2017: “[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects”

— Farhi-Werning’2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to “AD externality”

Augment monetary policy with state-contingent capital controls

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.

Optimal subsidy from Farhi-Werning’2016:

\[\tau_{ht}^{\text{h}} = P_{it} \left\{ C_{l,ii} \cdot t_{ii} + \varepsilon_{it} P_{it}^* \cdot C_{l,ii}^* \cdot t_{it} \right\} \]

\[\begin{align*}
&>0 \quad =0 \\
&=0 \quad \neq 0
\end{align*} \]

Corollary: The optimal cooperative capital controls are generically non-zero and target economies that import depressed/overheated goods
Can trade policy overcome limitations of MP and capital controls?

- fiscal policy can restore efficient allocation under LCP (Chen-Devereux-Xu-Shi’2018)
Can trade policy overcome limitations of MP and capital controls?

— fiscal policy can restore efficient allocation under LCP (Chen-Devereux-Xu-Shi’2018)

Lemma: The non-cooperative first-best allocation can be implemented with

1. monetary policy stabilizing P_{iit}
2. export tax τ^E_{it} stabilizing $\tau^E_{it} \mathcal{E}_{it} P^*_it$
3. production subsidy to exporters τ^{*}_{it} stabilizing P^*_it
Trade Tariffs

- Can trade policy overcome limitations of MP and capital controls?
 - fiscal policy can restore efficient allocation under LCP (Chen-Devereux-Xu-Shi’2018)

Lemma: The non-cooperative first-best allocation can be implemented with

1. **monetary policy** stabilizing P_{it} ⇒ *domestic margin*
2. **export tax** τ^E_{it} stabilizing $\tau^E_{it} \mathcal{E}_{it} P_{it}^*$ ⇒ *expenditure switching*
3. **production subsidy** to exporters τ^*_{it} stabilizing P_{it}^* ⇒ *price-adj. costs*
Trade Tariffs

- Can trade policy overcome limitations of MP and capital controls?
 - fiscal policy can replicate effects of monetary depreciation
 - fiscal policy can restore efficient allocation under LCP
 (Chen-Devereux-Xu-Shi’2018)

- **Lemma**: The non-cooperative first-best allocation can be implemented with
 1. monetary policy stabilizing $P_{iit} \Rightarrow \text{domestic margin}$
 2. export tax τ^E_{it} stabilizing $\tau^E_{it}E_{it}P^*_it \Rightarrow \text{expenditure switching}$
 3. production subsidy to exporters τ^*_it stabilizing $P^*_it \Rightarrow \text{price-adj. costs}$

- The optimal policy is “robust” in terms of targets (cf. FGI’2014)
 - invariant to parameters/details of the model
Trade Tariffs

- Can trade policy overcome limitations of MP and capital controls?
 - fiscal policy can replicate effects of monetary depreciation
 - fiscal policy can restore efficient allocation under LCP
 (Chen-Devereux-Xu-Shi’2018)

- **Lemma**: The non-cooperative first-best allocation can be implemented with
 1. monetary policy stabilizing $P_{iit} \Rightarrow domestic\ margin$
 2. export tax τ_{it}^E stabilizing $\tau_{it}^E \epsilon_{it} P_{it}^* \Rightarrow expenditure\ switching$
 3. production subsidy to exporters τ_{it}^* stabilizing $P_{it}^* \Rightarrow price-adj.\ costs$

- The optimal policy is “robust” in terms of targets (cf. FGI’2014)
 - invariant to parameters/details of the model

- Can be implemented with alternative instruments...
 - but export tax is crucial as the Lerner symmetry does not hold
 (Barbiero-Farhi-Gopinath-Itskhoki’2019)
OPTIMAL U.S. POLICY
Proposition (U.S. policy)

Assume fully sticky prices and complete markets. Then optimal U.S. monetary policy rule balances three motives:

\[
\Gamma \cdot p_{it} + \gamma \Xi \cdot \int p^*_j \, dj + \gamma \epsilon \cdot n_{x_it} = 0.
\]
Proposition (U.S. policy)

Assume fully sticky prices and complete markets. Then optimal U.S. monetary policy rule balances three motives:

\[\Gamma \cdot p_{iit} + \gamma \Xi \cdot \int p^*_j \, dj + \gamma \epsilon \cdot nx_{it} = 0. \]

1. **Price targeting**: domestic demand and expenditure switching for exports.
Proposition (U.S. policy)

Assume fully sticky prices and complete markets. Then optimal U.S. monetary policy rule balances three motives:

$$\Gamma \cdot p_{iit} + \gamma\Xi \cdot \int p^*_j \, dj + \gamma\epsilon \cdot n_{x_{it}} = 0.$$

1. **Price targeting**: domestic demand and expenditure switching for exports
2. **ToT manipulation**: markups of world exporters depend on U.S. policy
Proposition (U.S. policy)

Assume fully sticky prices and complete markets. Then optimal U.S. monetary policy rule balances three motives:

\[\Gamma \cdot p_{iit} + \gamma \Xi \cdot \int p^*_j \, dj + \gamma \epsilon \cdot nx_{it} = 0. \]

1. **Price targeting**: domestic demand and expenditure switching for exports
2. **ToT manipulation**: markups of world exporters depend on U.S. policy
3. **Dynamic ToT manipulation**: borrow cheaply and save at higher rate
 - as if U.S. economy is large (cf. Costinot-Lorenzoni-Werning'2014)
 - absent in previous literature that focused on \(nx_{it} = 0 \)

Proposition (Welfare)

In the special case, if countries’ openness \(\gamma \) is sufficiently low, then the welfare of the U.S. under DCP is higher relative to other countries.
Proposition (U.S. policy)

Assume fully sticky prices and complete markets. Then optimal U.S. monetary policy rule balances three motives:

\[\Gamma \cdot p_{iit} + \gamma \Xi \cdot \int p_{jt}^* \,dj + \gamma \epsilon \cdot nx_{it} = 0. \]

1. **Price targeting:** domestic demand and expenditure switching for exports

2. **ToT manipulation:** markups of world exporters depend on U.S. policy

3. **Dynamic ToT manipulation:** borrow cheaply and save at higher rate
 — as if U.S. economy is large (cf. Costinot-Lorenzoni-Werning'2014)
 — absent in previous literature that focused on \(nx_{it} = 0 \)

- **General case:** the U.S. can benefit or lose from DCP relative to RoW
Proposition (U.S. policy)

Assume fully sticky prices and complete markets. Then optimal U.S. monetary policy rule balances three motives:

$$\Gamma \cdot p_{iit} + \gamma \Xi \cdot \int p^*_j \, dj + \gamma e \cdot nx_{it} = 0.$$

1. Price targeting: domestic demand and expenditure switching for exports
2. ToT manipulation: markups of world exporters depend on U.S. policy
3. Dynamic ToT manipulation: borrow cheaply and save at higher rate
 — as if U.S. economy is large (cf. Costinot-Lorenzoni-Werning'2014)
 — absent in previous literature that focused on $nx_{it} = 0$

General case: the U.S. can benefit or lose from DCP relative to RoW

Special case: complete markets + log-linear preferences + no intermediates

Proposition (Welfare)

In the special case, if countries' openness γ is sufficiently low, then the welfare of the U.S. under DCP is higher relative to other countries.
Cooperative Policy

- Global planner maximizes total welfare across countries
 - *U.S. welfare* is a trivial fraction of global welfare
 - *U.S. monetary policy* has global effects

Proposition (Cooperative policy)

Assume complete asset markets and $\tau^*_i = \tau_i = \epsilon^{-1}$. Then the optimal cooperative policy implements $\pi_{iit} = 0$, $\forall i \neq \text{U.S.}$ and

$$\int \varpi_{it} \cdot P_{iit} E_{it} P^*_{it} dt = 1, \ varpi_{it} \equiv \left(P^*_{it} P_{it} \right)^{\epsilon^{-1}}.$$

Monetary cooperation harms the U.S. and benefits the RoW:
- country-specific shocks ⇒ conflict of interests, no first-best
- common shocks ⇒ cooperation = non-cooperation = first-best

Corollary: forming currency union can benefit its members
Cooperative Policy

- Global planner maximizes total welfare across countries
 - U.S. welfare is a trivial fraction of global welfare
 - U.S. monetary policy has global effects

Proposition (Cooperative policy)

Assume complete asset markets and $\tau^*_i = \tau_i = \frac{\epsilon-1}{\epsilon}$. Then the optimal cooperative policy implements

$$\pi_{iit} = 0, \forall i \neq \text{U.S.} \quad \text{and} \quad \int \varpi_{it} \cdot \frac{P_{iit}}{E_{it}P^*_i} \, di = 1, \quad \varpi_{it} \equiv \left(\frac{P^*_i}{P^*_t} \right)^{\epsilon-1}.$$
Cooperative Policy

- Global planner maximizes total welfare across countries
 - U.S. welfare is a trivial fraction of global welfare
 - U.S. monetary policy has global effects

Proposition (Cooperative policy)

Assume complete asset markets and \(\tau_i^* = \tau_i = \frac{\varepsilon - 1}{\varepsilon} \). Then the optimal cooperative policy implements

\[
\pi_{iit} = 0, \quad \forall i \neq \text{U.S.} \quad \text{and} \quad \int \omega_{it} \cdot \frac{P_{iit}}{E_{it}P_{it}^*} \, di = 1, \quad \omega_{it} \equiv \left(\frac{P_{it}^*}{P_t^*} \right)^{\varepsilon - 1}.
\]

- Monetary cooperation harms the U.S. and benefits the RoW:
 - country-specific shocks \(\Rightarrow \) conflict of interests, no first-best
 - common shocks \(\Rightarrow \) cooperation = non-cooperation = first-best
Global planner maximizes total welfare across countries

- U.S. welfare is a trivial fraction of global welfare
- U.S. monetary policy has global effects

Proposition (Cooperative policy)

Assume complete asset markets and $\tau_i^* = \tau_i = \frac{\varepsilon - 1}{\varepsilon}$. Then the optimal cooperative policy implements

$$\pi_{iit} = 0, \quad \forall i \neq \text{U.S.} \quad \text{and} \quad \int \varpi_{it} \cdot \frac{P_{iit}}{\varepsilon_{it}P_{iit}^*} \, di = 1, \quad \varpi_{it} \equiv \left(\frac{P_{iit}^*}{P_{it}^*} \right)^{\varepsilon - 1}.$$

Monetary cooperation harms the U.S. and benefits the RoW:

- country-specific shocks \Rightarrow conflict of interests, no first-best
- common shocks \Rightarrow cooperation = non-cooperation = first-best

Corollary: forming currency union can benefit its members
Conclusion

1. Optimality of Inflation Targeting
 — robust and simple non-U.S. policy despite inefficient ToT & output gap

2. Global Monetary Cycle
 — “fear of floating” and *partial* peg to the dollar

3. No Case for Capital Controls
 — inefficient against U.S. spillovers despite AD externalities

4. Motives of U.S. Policy
 — optimal to partially internalize spillovers on the RoW

5. Benefits from Cooperation
 — currency union as a substitute for unsustainable global cooperation
Source: Ilzetzki, Reinhart and Rogoff (2017)
Source: Gopinath (2016)
Pass-Through into Border and Retail Prices

Source: Auer, Burstein, and Lein (2018)
Pass-Through into Border and Retail Prices

Source: Auer, Burstein, and Lein (2018)
Households

Preferences:
\[E \sum_{t=0}^{\infty} \beta^t U(C_{it}, N_{it}, \xi_{it}) \]

Consumption aggregator:
\[C_{it} = \left[\left(1 - \gamma \right)^{\frac{1}{\theta}} C_{iit}^{\frac{\theta - 1}{\theta}} + \gamma^\frac{1}{\theta} C^*_{it}^{\frac{\theta - 1}{\theta}} \right]^{\frac{\theta}{\theta - 1}}, \quad C^*_{it} = \left(\int C_{jit}(\omega)^{\frac{\varepsilon - 1}{\varepsilon}} \, d\omega \, dj \right)^{\frac{\varepsilon}{\varepsilon - 1}} \]

- macro elasticity θ vs. micro elasticity $\varepsilon > 1$

Budget constraint:
\[P_{it} C_{it} + \varepsilon_{it} \sum_{h \in H_t} Q^h B^h_{it+1} + \frac{B^i_{it+1}}{R_{it}} = W_{it} N_{it} + \Pi_{it} + \varepsilon_{it} \sum_{h \in H_{t-1}} (Q^h + D^h) B^h_{it} + B^i_{it} + \psi_{it} \]

- ε_{it} is the nominal exchange rate against the dollar
- B^i_{it} is domestic nominal bond
- arbitrary set H_t of internationally traded assets
- wealth/ToT/commodity/financial shock ψ_{it}
Firms

- **CRS technology:**
 \[Y_{it} = A_{it} F(L_{it}, X_{it}) \]
 for simplicity, same bundle of intermediates \(X_{it} \) as in consumption

- **Rotemberg price setting:**

 1. **Local currency** in domestic market:
 \[
 \max_{\{P_t\}} \mathbb{E} \sum_{t=0}^{\infty} \Theta_{it} \left[\left(P_t - \tau_i MC_{it} \right) \left(\frac{P_t}{P_{iit}} \right)^{-\varepsilon} Y_{iit} - (1 - \gamma) \frac{\varphi}{2} \left(\frac{P_t}{P_{t-1}} - 1 \right)^2 W_{it} \right]
 \]

 2. **Dollars** in foreign markets:
 \[
 \max_{\{P_t\}} \mathbb{E} \sum_{t=0}^{\infty} \Theta_{it} \left[\left(\mathcal{E}_{it} P_t - \tau_i^* MC_{it} \right) \left(\frac{P_t}{P_{it}} \right)^{-\varepsilon} Y_{iit}^* - \gamma \frac{\varphi}{2} \left(\frac{P_t}{P_{t-1}} - 1 \right)^2 W_{it} \right]
 \]

 - \(\Theta_{it} \equiv \beta^t \frac{U_{Cit}}{P_{it}} \) is the nominal SDF
 - \(Y_{iit} \equiv C_{iit} + X_{iit} \) and \(Y_{iit}^* \equiv \int (C_{ijt} + X_{ijt}) \, dj \) are demand shifters
 - \(\tau_i \) and \(\tau_i^* \) are time-invariant subsidies to domestic firms and exporters
Market Clearing

- **Goods market:**
 \[A_{it} F(L_{it}, X_{it}) = (1 - \gamma) \left(\frac{P_{it}}{P_{it}^*} \right)^{-\theta} (C_{it} + X_{it}) + \gamma \left(\frac{P_{it}^*}{P_{t}^*} \right)^{-\varepsilon} \int \left(\frac{\mathcal{E}_{jt} P_t^*}{P_{jt}^*} \right)^{-\theta} (C_{jt} + X_{jt}) \, dj \]

- **Labor market:**
 \[N_{it} = L_{it} + \frac{\psi}{2} (1 - \gamma) \pi_{iit}^2 + \frac{\psi}{2} \gamma \pi_{it}^2 \]

- **Asset markets:**
 \[\int B_{it+1}^h \, di = 0, \quad \forall h \in H_t, \quad B_{it}^i = 0 \]

- **Country’s budget constraint:**
 \[\sum_{h \in H_t} Q_t^h B_{it+1}^h - \sum_{h \in H_{t-1}} (Q_t^h + D_t^h) B_{it}^h = \gamma \left[P_{it}^* \left(\frac{P_{it}^*}{P_t^*} \right)^{-\varepsilon} \int \left(\frac{\mathcal{E}_{jt} P_t^*}{P_{jt}^*} \right)^{-\theta} (C_{jt} + X_{jt}) \, dj - P_t^* \left(\frac{\mathcal{E}_{it} P_t^*}{P_{it}^*} \right)^{-\theta} (C_{it} + X_{it}) \right] + \psi_{it}. \]
Equilibrium

- Ramsey approach: nominal interest rates R_{it} as monetary instrument

Lemma 1: the same equilibrium in a large set of games

To isolate new policy motives assume:

A_1: production subsidies $\tau_i = \varepsilon - 1$, $\tau^*_i = 1$ and no markup shocks

A_2: payoffs of assets D_h are independent from monetary policies

\Rightarrow eliminate monopolistic distortion and the terms-of-trade externality

Lemma 2: the flexible-price equilibrium $\phi = 0$

(a) is efficient from the perspective of individual country,

(b) can be implemented under PCP by targeting $\pi_{it} = 0$.

back
Equilibrium

- Ramsey approach: nominal interest rates R_{it} as monetary instrument

Definition: solve for a SPNE of the following game

- countries choose domestic inflation π_{iit}
- the U.S. moves before other countries
- full commitment

Lemma 1: the same equilibrium in a large set of games
To isolate new policy motives assume:

- $A1$: production subsidies $\tau_i = \varepsilon - 1$, $\tau^*_i = 1$ and no markup shocks

\Rightarrow eliminate monopolistic distortion and the terms-of-trade externality

- $A2$: payoffs of assets D_h are independent from monetary policies

\Rightarrow monetary policy does not aim to complete asset markets

Lemma 2: the flexible-price equilibrium $\phi = 0$

(a) is efficient from the perspective of individual country,
(b) can be implemented under PCP by targeting $\pi_{iit} = 0$.

back
Equilibrium

- Ramsey approach: nominal interest rates R_{it} as monetary instrument

Definition: solve for a SPNE of the following game

- countries choose domestic inflation π_{iit} → can choose $C_{it}, L_{it}, Y_{it}, \pi_{it}^*$
- the U.S. moves before other countries → simultaneous-move game
- full commitment → binds only for the U.S.

Lemma 1: the same equilibrium in a large set of games
Equilibrium

- Ramsey approach: nominal interest rates R_{it} as monetary instrument

Definition: solve for a SPNE of the following game

- countries choose domestic inflation $\pi_{iit} \rightarrow$ can choose $C_{it}, L_{it}, Y_{it}, \pi_{it}^*$
- the U.S. moves before other countries \rightarrow simultaneous-move game
- full commitment \rightarrow binds only for the U.S.

Lemma 1: the same equilibrium in a large set of games

To isolate new policy motives assume:

A1: production subsidies $\tau_i = \frac{\epsilon-1}{\epsilon}$, $\tau_i^* = 1$ and no markup shocks

\Rightarrow eliminate monopolistic distortion and the terms-of-trade externality

A2: payoffs of assets D^h_t are independent from monetary policies

\Rightarrow monetary policy does not aim to complete asset markets
Equilibrium

- Ramsey approach: nominal interest rates \(R_{it} \) as monetary instrument

Definition: solve for a SPNE of the following game

- countries choose domestic inflation \(\pi_{iit} \) → can choose \(C_{it}, L_{it}, Y_{it}, \pi_{it}^* \)
- the U.S. moves before other countries → simultaneous-move game
- full commitment → binds only for the U.S.

Lemma 1: the same equilibrium in a large set of games

To isolate new policy motives assume:

- **A1:** production subsidies \(\tau_i = \frac{\varepsilon - 1}{\varepsilon}, \tau_{i}^* = 1 \) and no markup shocks
 ⇒ eliminate monopolistic distortion and the terms-of-trade externality
- **A2:** payoffs of assets \(D_t^h \) are independent from monetary policies
 ⇒ monetary policy does not aim to complete asset markets

Lemma 2: the flexible-price equilibrium \(\varphi = 0 \)

(a) is efficient from the perspective of individual country,
(b) can be implemented under PCP by targeting \(\pi_{iit} = 0 \).
Fully sticky prices:

- Corsetti-Pesenti’2007, Devereux et al.’2007, Goldberg-Tille’2009
- ToT are constant and \textit{exogenous} to monetary policy
Intuition

1. Fully sticky prices:
 - Corsetti-Pesenti’2007, Devereux et al.’2007, Goldberg-Tille’2009
 - ToT are constant and **exogenous** to monetary policy

2. Complete markets, log-linear utility, no intermediates:
 - Casas-Diez-Gopinath-Gourinchas’2018
 - ToT are time-varying, but still **exogenous** to monetary policy

\[
\frac{MC_{it}}{E_{it}} = \frac{W_{it}}{A_{it}E_{it}} = \frac{P_{it}C_{it}}{A_{it}P_{0t}C_{0t}} = \frac{P_{0t}C_{0t}}{A_{it}}
\]
Intuition

1. Fully sticky prices:
 - Corsetti-Pesenti’2007, Devereux et al.’2007, Goldberg-Tille’2009
 - ToT are constant and **exogenous** to monetary policy

2. Complete markets, log-linear utility, no intermediates:
 - Casas-Diez-Gopinath-Gourinchas’2018
 - ToT are time-varying, but still **exogenous** to monetary policy

 \[
 \frac{MC_{it}}{E_{it}} = \frac{W_{it}}{A_{it}E_{it}} = \frac{P_{it}C_{it}}{A_{it}\frac{P_{it}C_{it}}{P_{0t}C_{0t}}} = \frac{P_{0t}C_{0t}}{A_{it}}
 \]

3. General case:
 - monetary policy **can** affect ToT, but finds it **optimal** to target π_{iit}
 - planner can change ToT only indirectly via exporters’ MC_{it} (cf. PCP)
 - conditional on optimal P_{iit}, exporters set prices efficiently
Domestic Dollarization

- EMs often face dollarization of domestic prices (Drenik-Perez’18)
- Extend model to have both PCP and DCP in home market
Domestic Dollarization

- EMs often face dollarization of **domestic** prices (Drenik-Perez’18)
- Extend model to have both PCP and DCP in home market

Proposition (Domestic dollarization)

The optimal policy stabilizes local-currency prices \(\pi_{iit} = 0 \) and imposes capital controls and export tariffs \(\tau_{it}^C \propto E_{it}P^*_{iit} - P_{iit} \).
EMs often face dollarization of domestic prices (Drenik-Perez’18)
Extend model to have both PCP and DCP in home market

Proposition (Domestic dollarization)

The optimal policy stabilizes local-currency prices $\pi_{iit} = 0$ and imposes capital controls and export tariffs $\tau_{c_{it}} \propto \varepsilon_{it} P_{iit}^ - P_{iit}$.*

1. **Optimal monetary target:**
 - currency of invoicing \gg country of origin

2. **Capital controls:**
 - AD externality
 - subsidize assets that pay in states with $\varepsilon_{it} P_{iit}^* > P_{iit}$

3. **Export tariffs:**
 - AD externality
 - boost exports in states with $\varepsilon_{it} P_{iit}^* > P_{iit}$
Endogenous Currency Choice

Extend the baseline model:

1. heterogeneous import share $\gamma_c, \gamma_d, \gamma_e$
2. heterogeneous use of intermediates ϕ_d, ϕ_e
3. Kimball aggregator w/ price complementarities α_d, α_e
4. endogenous currency choice

Proposition (Currency choice)

If price linkages across exporters α_e and $\phi_e \gamma_e$ are strong enough, then

(a) firms choose PCP locally and DCP abroad,
(b) the optimal policy targets $\pi_{iit} = 0$.

- policy targets $\pi_{iit} = 0$ ⇒ local firms choose PCP
- strong complementarities ⇒ exporters coordinate on DCP (Mukhin'2018)
- currency choice is efficient ⇒ policy targets $\pi_{iit} = 0$
Endogenous Currency Choice

- Extend the baseline model:
 1. heterogeneous import share $\gamma_c, \gamma_d, \gamma_e$
 2. heterogeneous use of intermediates ϕ_d, ϕ_e
 3. Kimball aggregator w/ price complementarities α_d, α_e
 4. endogenous currency choice

Proposition (Currency choice)

If price linkages across exporters α_e and $\phi_e \gamma_e$ are strong enough, then

(a) *firms choose PCP locally and DCP abroad,*

(b) *the optimal policy targets $\pi_{iit} = 0.$*

- policy targets $\pi_{iit} = 0 \Rightarrow$ local firms choose PCP
- strong complementarities \Rightarrow exporters coordinate on DCP (Mukhin’2018)
Extend the baseline model:

1. heterogeneous import share $\gamma_c, \gamma_d, \gamma_e$
2. heterogeneous use of intermediates ϕ_d, ϕ_e
3. Kimball aggregator w/ price complementarities α_d, α_e
4. endogenous currency choice

Proposition (Currency choice)

If price linkages across exporters α_e and $\phi_e \gamma_e$ are strong enough, then

(a) *firms choose PCP locally and DCP abroad,*

(b) *the optimal policy targets $\pi_{iit} = 0$.*

- policy targets $\pi_{iit} = 0 \Rightarrow$ local firms choose PCP
- strong complementarities \Rightarrow exporters coordinate on DCP (*Mukhin’2018*)
- currency choice is efficient \Rightarrow policy targets $\pi_{iit} = 0$
DCP vs. Response to Fed’s Shocks

Source: Zhang (2018)
Comparison to the Literature

<table>
<thead>
<tr>
<th>Environment:</th>
<th>DSX</th>
<th>CP</th>
<th>GT</th>
<th>CDGG</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td># of countries</td>
<td>two</td>
<td>three</td>
<td>SOE</td>
<td>continuum</td>
<td></td>
</tr>
<tr>
<td>preferences</td>
<td>log-linear</td>
<td></td>
<td>general</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermediates</td>
<td>no</td>
<td></td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>asset markets</td>
<td>complete</td>
<td></td>
<td>arbitrary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prices</td>
<td>fully sticky</td>
<td>Calvo</td>
<td>Rtmberg/Calvo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>terms-of-trade</td>
<td>exogenous to MP</td>
<td></td>
<td>endogenous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>currency choice</td>
<td>rationalized</td>
<td>exogenous</td>
<td>endogenous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-U.S. policy:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>optimal target</td>
<td>price stabilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>allocation</td>
<td>inefficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>implementation</td>
<td>inward-looking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exchange rates</td>
<td>floating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>capital controls</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trade policy</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U.S. policy motives:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>import prices</td>
<td>yes</td>
<td></td>
<td>—</td>
<td>yes</td>
</tr>
<tr>
<td>dynamic ToT</td>
<td>no</td>
<td></td>
<td>—</td>
<td>yes</td>
</tr>
<tr>
<td>welfare effects</td>
<td>negative</td>
<td></td>
<td>ambiguous</td>
<td>—</td>
</tr>
<tr>
<td>cooperative policy</td>
<td>yes</td>
<td></td>
<td>—</td>
<td>yes</td>
</tr>
</tbody>
</table>

Non-U.S. Planner’s Problem

\[
\max_{\{\varepsilon_{it}, B_{it}^h, C_{it}, L_{it}, \pi_{iit}, \pi_{it}^*\}} \mathbb{E} \sum_{t=0}^{\infty} \beta^t U(C_{it}, L_{it} + \frac{\varphi}{2}(1 - \gamma)\pi_{iit}^2 + \frac{\varphi}{2} \gamma \pi_{it}^* \xi_{it})
\]

(RS) \[\mathbb{E}_t \Theta_{it, t+1} \frac{\varepsilon_{it+1}^h}{\varepsilon_{it}^h} \frac{Q_{t+1}^h}{Q_t^h} + D_{t+1}^h = 1 \]

(BC) \[\sum_{h \in H_t} Q_t^h B_{it+1}^h - \sum_{h \in H_{t-1}} (Q_t^h + D_t^h) B_{it}^h = \gamma \left[P_{it}^* \left(\frac{P_{it}^*}{P_t^*}\right)^{-\varepsilon} \int \left(\frac{\varepsilon_{jt} P_t^*}{P_{jt}^*}\right)^{-\theta} (C_{jt} + X_{jt}) \, dj - P_t^* \left(\frac{\varepsilon_{it} P_t^*}{P_{it}}\right)^{-\theta} (C_{it} + X_{it})\right] + \psi_{it} \]

(MC) \[A_{it} F(L_{it}, X_{it}) = (1 - \gamma) \left(\frac{P_{iit}}{P_{it}}\right)^{-\theta} (C_{it} + X_{it}) + \gamma \left(\frac{P_{it}^*}{P_t^*}\right)^{-\varepsilon} \int \left(\frac{\varepsilon_{jt} P_t^*}{P_{jt}^*}\right)^{-\theta} (C_{jt} + X_{jt}) \, dj \]

(PC) \[\pi_{iit} (\pi_{iit} + 1) W_{it} = -\kappa \left(P_{iit} - \frac{\varepsilon \tau_i}{\varepsilon - 1} MC_{it}\right) \frac{Y_{iit}}{1 - \gamma} + \beta \mathbb{E}_t \Theta_{it, t+1} \pi_{iit+1} (\pi_{iit+1} + 1) W_{it+1} \]

(PC) \[\pi_{it}^* (\pi_{it}^* + 1) W_{it} = -\kappa \left(\varepsilon_{it} P_{it}^* - \frac{\varepsilon \tau_{it}^*}{\varepsilon - 1} MC_{it}\right) \frac{Y_{it}^*}{\gamma} + \beta \mathbb{E}_t \Theta_{it, t+1} \pi_{it+1}^* (\pi_{it+1}^* + 1) W_{it+1} \]

where \[\frac{X_{it}}{L_{it}} = g \left(\frac{-U_{Nit}}{U_{Cit}}\right), \quad \Theta_{it, t+\tau} = \beta^\tau U_{Cit+\tau} P_{it}, \quad MC_{it} = \frac{h\left(\frac{-U_{Nit}}{U_{Cit}}\right)}{A_{it}}, \quad Y_{it}^* = \int (C_{iit} + X_{iit}) \, dj \]
Planner’s Problem w/ Capital Controls

\[
\max_{\{E_{it}, \tau_{it+1}, B_{it}^h, C_{it}, L_{it}, \pi_{iit}, \pi_{iit}^*\}} \quad \mathbb{E} \sum_{t=0}^{\infty} \beta^t U(C_{it}, L_{it} + \frac{\varphi}{2}(1-\gamma)\pi_{iit}^2 + \frac{\varphi}{2}\gamma\pi_{iit}^*2, \xi_{it})
\]

\[
(RS) \quad \mathbb{E}_t \Theta_{it,t+1} \frac{E_{it+1}^h + D_{it+1}^h}{E_{it}^h (1 - \tau_{it+1}^h) E_{it}^h} = 1
\]

\[
(BC) \quad \sum_{h \in H_t} Q_{it}^h B_{it+1}^h - \sum_{h \in H_{t-1}} (Q_{it}^h + D_{it}^h) B_{it}^h = \gamma \left[P_{it}^* \left(\frac{P_{it}^*}{P_{it}} \right)^{-\varepsilon} \int \left(\frac{E_{jt} P_{jt}^*}{P_{jt}} \right)^{-\theta} (C_{jt} + X_{jt}) \, dj - P_{it}^* \left(\frac{E_{jt} P_{jt}^*}{P_{jt}} \right)^{-\theta} (C_{jt} + X_{jt}) \right] + \psi_{it}
\]

\[
(MC) \quad A_{it} F(L_{it}, X_{it}) = (1 - \gamma) \left(\frac{P_{iit}}{P_{it}} \right)^{-\theta} (C_{it} + X_{it}) + \gamma \left(\frac{P_{iit}}{P_{it}} \right)^{-\varepsilon} \int \left(\frac{E_{jt} P_{jt}^*}{P_{jt}} \right)^{-\theta} (C_{jt} + X_{jt}) \, dj
\]

\[
(PC) \quad \pi_{iit} (\pi_{iit} + 1) W_{it} = -\kappa \left(P_{iit} - \frac{\varepsilon \tau_i}{\varepsilon - 1} MC_{it} \right) \frac{Y_{iit}}{1 - \gamma} + \beta \mathbb{E}_t \Theta_{it,t+1} \pi_{iit+1} (\pi_{iit+1} + 1) W_{it+1}
\]

\[
(PC) \quad \pi_{iit} (\pi_{iit} + 1) W_{it} = -\kappa \left(E_{it} P_{iit}^* - \frac{\varepsilon \tau^*_{i}}{\varepsilon - 1} MC_{it} \right) \frac{Y_{iit}^*}{\gamma} + \beta \mathbb{E}_t \Theta_{it,t+1} \pi_{iit+1}^* (\pi_{iit+1}^* + 1) W_{it+1}
\]

where

\[
\frac{X_{it}}{L_{it}} = g \left(\frac{-U_{N_{it}}}{U_{Cit}} \right), \quad \Theta_{it,t+\tau} = \beta^\tau \frac{U_{Cit+\tau} P_{it}}{U_{Cit} P_{it+\tau}} , \quad MC_{it} = \frac{h \left(\frac{-U_{N_{it}}}{U_{Cit}} \right)}{A_{it}} , \quad Y_{iit}^* \equiv \int (C_{ijt} + X_{ijt}) \, dj
\]