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Abstract

This paper studies market clearing in matching markets. The model is non-cooperative,

fully decentralized, and in Markov strategies. Workers and firms bargain with each

other to determine who will be matched to whom and at what terms of trade. Once

a worker-firm pair reach agreement they exit the market. Alternative possible matches

affect agents’ bargaining positions. We ask when do such markets clear efficiently and

find that inefficiencies – mismatch and delay – often feature. Mismatch occurs whenever

an agent’s bargaining position is at risk of deteriorating. Delay occurs whenever agents

expect their bargaining position to improve. Delay can be extensive and structured with

vertically differentiated markets endogenously clearing from the top down.
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1 Introduction

We study thin matching markets, particularly labor markets, featuring decentralized nego-

tiations that involve heterogeneous agents from both sides of the market. We capture one

dimension of heterogeneity through constraints restricting who can match to whom. Firms

might be able to employ only workers they have interviewed; some positions might only be

filled through referrals; and some people may simply be unqualified for some positions. On

top of this, we allow for variability in how well-suited different workers are to fill different

vacancies. We take these matching constraints and heterogeneities as given, and ask when

decentralized negotiations can clear markets efficiently.

We assume players exit the market once they reach an agreement. Exit shapes the set of

alternative matches available to players remaining in the market. We contend that in many

decentralized labor markets agreements are reached sequentially, and the market context in

which the remaining workers and firms bargain evolves. For instance, when negotiating with

a firm, a worker might use the possibility of taking a position with another firm to achieve

a higher wage. But this bargaining stance may be undermined if that position is filled by

a different worker. When the changing market context affects the terms that are agreed in

equilibrium, we find that markets fail to clear efficiently. People delay when they expect the

market to evolve in their favor, and match inefficiently when they expect the market to evolve

against them.

In our model there are multiple buyers, multiple sellers, matching is one-to-one, and each

buyer-seller pair generates some pair-specific surplus if matched. Time is infinite, and in each

period a single agent is selected at random to make a proposal. The proposer chooses an

unmatched player and offers a split of the surplus that the pair would generate if matched.

If the offer is accepted, the pair exits the market. If it is rejected, the pair remains in the

market. While non-stationarities created by matched pairs exiting complicate matters, the

endogenous evolution of the market is central to our results. We find it is this that creates

scope for bargaining frictions, and we investigate the role of market evolution in driving

inefficiencies, both mismatch (inefficient matching) and delay.

We study the Markov perfect equilibria (MPE) in which strategies only depend on the set

of players who remain in the market. Restricting attention to such stationary equilibria is

common in the bargaining literature,1 can be motivated on grounds of complexity,2 and has

1See, for example, Rubinstein and Wolinsky (1985, 1990), Gale (1987), Polanski and Winter (2010), Abreu
and Manea (2012b).

2Maskin and Tirole (2001) argue for considering MPE on the basis of complexity. Further, the conclusions
of Bhaskar, Mailath and Morris (2013), which are reached in a more general setting and can be applied to our
model, imply that only MPE are purifiable. Finally, Sabourian (2004) provides additional motivation specific
to bargaining in markets.
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received some experimental support.3

Our primary focus is on the existence of an efficient MPE (that is, an equilibrium in

which buyers and sellers are matched to maximize total surplus) when players are patient (or

equivalently, interactions are frequent). We consider equilibria that are efficient for sufficiently

patient players, as well as limiting equilibria that only become efficient as the discount factor

converges to 1. Interpreting the probability that a player is selected to make an offer as

the bargaining power of that player, suppose the surplus generated by an efficiently matched

pair is split in proportion to these bargaining powers. We refer to these payoffs as agents’

Rubinstein payoffs, as they would obtain in the limit if all efficient pairs bargained bilaterally.4

Our first main result establishes that an efficient MPE exists for sufficiently patient players

if and only if Rubinstein payoffs are in the core of the market (that is, if no pair of players

can deviate and benefit by matching to each other when all players receive their Rubinstein

payoffs). Moreover, if this condition holds, all players receive their Rubinstein payoffs in the

limit as they become arbitrarily patient. If it is a mutual best response for players to ignore the

market context and bargain bilaterally with each other when discount factors are sufficiently

high, there is an MPE in which players do so. As a result, players match efficiently. If not,

there is no efficient MPE when players are sufficiently patient. Thus, whenever the market

context matters and players’ bargaining positions evolve as others exit the market, there does

not exist an efficient MPE.

To gain some intuition, consider an instance in which some player i, rather than bargaining

bilaterally with his efficient partner, prefers agreeing with some other player j. If so, in order

to preserve efficiency, this alternative match would have to serve as a binding outside option,

bounding i’s payoff while not being exercised. However, if i and j never agreed, then i’s

efficient partner would benefit by waiting for j to exit the market and by agreeing with i only

when his bargaining position decays. Thus, in such instances, there is no equilibrium in which

all players agree with their efficient partners with certainty.

This intuition also identifies a limitation of the aforementioned efficiency result. If j never

exits before i in equilibrium, then i’s efficient partner cannot weaken i’s bargaining position by

delaying. So when there is no danger of binding alternative matching opportunities being lost,

we might expect there to be an MPE that is inefficient away from the limit, but that exhibits

vanishingly small inefficiencies in the limit as players become arbitrarily patient. Indeed, in a

3Agranov and Elliott (2017) investigate bargaining in a laboratory experiment in an environment closely
related to the one we study. The MPE organize the data well and substantially better than standard alternative
theories and in particular efficient perfect equilibria. They find empirical support for several predictions we
make in this paper.

4We refer to these payoffs as Rubinstein payoffs as they are the unique limiting equilibrium outcome in
bilateral bargaining settings with random proposers. We do so, as this is the classical generalization to random
proposers of the bilateral bargaining setting with alternating offers analysed in Rubinstein (1982).
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two-player setting, Sutton (1986) establishes that, as agents become perfectly patient, outside

options can bound payoffs from below while being exercised with a probability converging to

zero. Investigating this possibility, we look for MPE that exhibit vanishing inefficiencies in

the limit. We begin by studying MPE that exhibit no delay or mismatch in the limit. In such

equilibria, agents may provide binding alternative matching opportunities and never exit the

market because in equilibrium they are unmatched. In this case, a modified version of our

main result continues to hold in the limit, and MPE will exhibit no delay or mismatch in the

limit only if suitably modified Rubinstein payoffs belong to the core. Permitting delay in the

limit, there is another way in which binding alternative matching opportunities might affect

payoffs without resulting in mismatch in the limit. This requires players to endogenously

exit in sequence. In particular, all players except one efficient pair may choose to delay with

probability one in the limit while waiting for this pair to reach agreement and exit the market.

If so, the agreeing pair of players would have alternative matching opportunities that are

never lost before their exit. Consequently, their bargaining positions would not evolve; and

alternative matches can bound the payoffs of this pair of players while being exercised with a

vanishingly small probability in the limit. It might be reasonable to postulate that no such

equilibrium would ever exist as it requires delay in the limit from pairs of players who expect

to be matched with probability one in the limit. Perhaps surprisingly, endogenous delay of

this form, resulting in sequential exit from the market, can occur in equilibrium. With four

players and equal bargaining powers we find necessary and sufficient conditions for such an

MPE to exist. The market must be highly vertically differentiated and clear from the top.

This is consistent with anecdotal evidence from high-skill labor markets. In sports and in the

movie industry, markets are sometimes reported to be held up until a star is matched.

Delay is possible in our model despite information being perfect because the order of play

is random. As time progresses and matched pairs exit the market, the strength of players’

bargaining positions evolves stochastically. Equilibrium delay stems from favorable beliefs

about the market evolution (for instance, beliefs about tempting alternative matches for their

bargaining partners exiting the market). In limiting equilibria with sequential exit, such

favorable beliefs are driven by vanishingly small probabilities of an inefficient match occurring,

which increase the expected payoffs of all delaying players.

Related Literature: We study decentralized bargaining in thin markets. The prototypical

market we intend to speak to is a labor market for high skill individuals. Such markets are

inherently thin, and characterized by heterogeneities and by decentralized negotiations. Our

approach is closest to the literature analyzing non-cooperative bargaining in thin markets.

This literature takes the coalitional bargaining approach, but restricts the coalitions which

can generate surplus and reach agreement to pairs of players. As there are large literatures
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considering coalitional approaches to non-cooperative bargaining and bargaining in large mar-

kets, we do not attempt a complete review of these. Instead, we just highlight some of the

most closely related work.

Because of the additional generality, coalitional bargaining models are typically a better

fit for political negotiations and committee decision making. The closest papers to ours in

this literature, Moldovanu and Winter (1995) and Okada (2011), also link cooperative and

non-cooperative approaches. Moldovanu and Winter consider a bargaining model with no

discounting and deterministic proposer orders. They find conditions on the proposer order for

a core outcome to be reached in a stationary equilibrium.5 The indeterminacy of equilibrium

bargaining outcomes caused by the lack of discounting is critical for their analysis. Our

conclusions rule out this indeterminacy by studying the limit of a model in which delay

costs vanish, and can nevertheless relate players’ bargaining power (or equivalently, proposal

probability) to the existence of an efficient MPE. Like us, Okada finds conditions under which

no efficient MPE exists, and relates these conditions to the core. However, in the assignment

economies we consider, the conditions he identifies are generically violated when there are

two or more players on each side of the market, implying that an efficient equilibrium never

exists.6 In contrast, an efficient MPE exists for a positive measure subset of the parameter

space in our decentralized bargaining model. Moreover, even when such conditions fail, we

show that there can be equilibria with vanishing inefficiencies as delay costs become small.

A vast literature has considered decentralized bargaining in large markets, meaning either

that the number of players is infinite or that agreeing players are replaced by exact repli-

cas.7 Seminal work includes Rubinstein and Wolinsky (1985), Gale (1987), and Binmore and

Herrero (1988). The literature has focused on deriving conditions for equilibrium outcomes

to approximate competitive equilibria (or equivalently, core outcomes) when the frictions get

small. Lauerman (2013) provides a tight characterization of when these two outcomes can be

expected to coincide. Most papers in this literature study steady state outcomes,8 but Moreno

and Wooders (2002) is an exception. As in some equilibria of our model, they find delay can

occur in the limit. But unlike our model, equilibrium outcomes in their setting are always

competitive as players become infinitely patient.

The most closely related work to ours models non-cooperative bargaining without replace-

ment in thin markets. This literature includes Rubinstein and Wolinsky (1990), Corominas-

5Their main conclusion establishes that a core outcome is reached when there is a stationary equilibrium
that holds for any proposer order. In our model, except in trivial cases, an efficient equilibrium never exists
for all proposer probabilities.

6See Section 5 of the online appendix for a more detailed comparison.
7See Manea (2013) for how the replica assumption relates to steady state outcomes in large markets.
8Some examples, with a particular focus on network bargaining, include Atakan (2010), Manea (2011) and

Polanski and Lazarova (2014).
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Bosch (2004), Gale and Sabourian (2006), Polanski (2007), Polanski and Winter (2010),

Abreu and Manea (2012a, 2012b), Kanoria et al (2014), and Polanski and Vega Redondo

(2014). These papers embed different degrees of coordination into their bargaining proto-

cols. Corominas-Bosch (2004) investigates the existence of competitive equilibria in markets

with homogeneous surpluses (a link in the bipartite network indicates that the two players

would generate a unit of surplus if matched) and alternating non-exclusive offers. The setup

differs from the one considered here, and requires a high degree of coordination both at the

offer stage (as players on one side propose simultaneously to everyone on the other side of

the market) and at the acceptance stage (as more than one assignment may be possible).

Polanski (2007) also considers a setting with homogeneous surpluses and strong coordination

(as a maximum matching is used to select which players bargain bilaterally each period); and

links subgame perfect equilibrium outcomes to the Dulmage-Mendelsohn decomposition of the

bipartite network.

Overall the closest papers to ours are Gale and Sabourian (2006) and Abreu and Manea

(2012a, 2012b). Gale and Sabourian (2006) differs from us insofar as all players are simulta-

neously matched into pairs before an agent in each pair is selected to be the proposer with

equal probability. They include heterogeneous surpluses, but assume that different sellers have

identical objects to sell, so that a given buyer generates the same surplus with all sellers. They

provide an example in which all MPE payoffs are non-competitive and, therefore, the market

outcome is inefficient.

Abreu and Manea (2012a, 2012b) consider environments with homogeneous surpluses in

which players cannot necessarily be partitioned into buyers and sellers (implying that a core

match might not exist or be unique). One of the extensions of Abreu and Manea (2012a)

analyzes a protocol close to the one we consider, but does not restrict attention to stationary

equilibria. Their conclusions prove the existence of non-stationary equilibria that converge

to efficiency as the time elapsed between offers vanishes. Abreu and Manea (2012b), like

us, focuses on limiting stationary equilibria, but in the context of a bargaining protocol in

which players are randomly paired to bargain.9 As in Gale and Sabourian (2006), an important

contribution of their paper is to provide examples in which all MPE are inefficient. While both

Gale and Sabourian (2006) and Abreu and Manea (2012b) identify interesting and important

features of market inefficiencies, neither provides general conditions to ensure that an efficient

limiting stationary equilibrium exists or does not exist. But, such conditions are important

in order to assess the extent of bargaining frictions in markets. To fulfill this goal, we select

a protocol that favours the existence of efficient equilibria, and introduce a slightly stronger

notion of efficiency (as we explain in Section 5).

9Each period, a link is selected according to some probability distribution, and then a player on that link
is selected with equal probability to propose.
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In protocols that select links to determine the proposer, when an inefficient link is selected,

players must either disagree or match inefficiently. Allowing players to choose to whom they

make an offer prevents delay and mismatch from being necessary features of equilibrium

play and simplifies the characterization of efficient MPE. In the conclusions, we make this

point explicitly by discussing an example contained in Abreu and Manea (2012b). Given

the possibility of inefficiency, we select a bargaining protocol that is predisposed to admit

an efficient MPE. To clarify the role of bargaining frictions, we further restrict attention to

environments in which the surplus maximizing match exists and is unique. This alleviates

coordination problems that might arise,10 and is the generic case whenever the market can

be partitioned into two sides. Our results clarify that disagreement is possible even between

players who are matched in the unique efficient match, and that the multiplicity of equilibria

is driven by the underlying coordination game and not by the multiplicity of core matches. As

is customary in the literature, we allow bargaining frictions, represented by the time elapsed

between offers, to get small. Despite making these modeling choices, we find inefficiencies to

be a common feature in these market and we find conditions for these to occur.

Roadmap: The next two sections introduce the economy (Section 2) and the directed-search

bargaining protocol analyzed (Section 3). Section 4 defines solution concepts and presents the

baseline characterization. Section 5 introduces our efficiency criteria and relates them to wel-

fare. Several examples preview the main conclusions in Section 6. All the main contributions

on stationary equilibrium welfare are in Section 7. The relationship to the search literature

and alternative bargaining protocols are discussed in Section 8. All the proofs of propositions

are in the appendix, while the proofs of remarks and several additional robustness checks can

be found in the online appendix.

2 The Assignment Economy

An assignment economy consists of a set of players N = {1, ..., n} and an n by n matrix S

characterizing the surplus that can be generated by any two players in the economy. The ij

entry of S, sij ≥ 0, denotes the surplus generated when players i and j are matched. The

surplus matrix S can be interpreted as a network. The network is assumed to be undirected

(so that sij = sji for any i, j ∈ N) and bipartite (so that, for some partition (P1, P2) of the

set of players N , sij = 0 whenever i, j ∈ Pk for k ∈ {1, 2}). The two assumptions imply that

the surplus generated in a match is independent of the identity of the player who initiates the

match, and that surplus can be generated only by players of different types. By assumption,

10Section 2 in the online appendix for a more detailed comparison on this point.
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workers generate surplus only with firms, men generate surplus only with women, and buyers

generate surplus only with sellers.

A match is a map µ : N → N such that µ(µ(i)) = i for any i ∈ N . If µ(i) = i, we say that

player i is unmatched. If µ(i) = j, then i and j generate surplus sij. Let M(N) denote the

set of possible matches for a given set of players N . An efficient match η for an assignment

economy S is a match that maximizes surplus

∑
i∈N

siη(i) = max
µ∈M(N)

{∑
i∈N

siµ(i)

}
.

The core of the market consists of the set of match and payoff vector pairs (µ, u) satisfying:

[1] ui + uµ(i) = siµ(i) for any i ∈ N ,

[2] ui + uj ≥ sij for any i, j ∈ N .

Shapley and Shubik (1971) establish that any core match is an efficient match, and that

a unique efficient match exists when no two positive links have the same value.11 As the

condition for uniqueness is generic, our analysis restricts attention to economies with a unique

efficient match. Thus, throughout the analysis we refer to the unique efficient match η as the

core match.

Although condition [2] rules only out the existence of profitable pairwise-deviations, Shap-

ley and Shubik (1971) establish that this suffices to rule out the existence of profitable

coalitional-deviations. The lowest and the highest payoff that player i can receive in a core

outcome will be denoted by ui and ui.

3 Matching and Bargaining

The analysis considers a non-cooperative, infinite-horizon bargaining protocol in which players

choose whom to bargain with. All players discount the future by a common factor δ ∈ (0, 1).

At the beginning of the game, all players are active, but they can become inactive as the

game unfolds. In every period, a single player i ∈ N is selected at random to be the proposer,

with probability pi > 0. If proposer i is active, he can make an offer to at most one other

active player. We adopt as a convention that a player failing to make an offer chooses to offer

to himself. An offer from player i to a player j 6= i consists of a surplus split xji ∈ [0, sij],

where xji denotes the amount of surplus generated by the new match, sij, that he intends to

leave to j. The player receiving the offer then has a binary choice, to accept (1) or reject (0)

11Formally, the efficient match is unique if sij > 0 implies skl 6= sij for all kl 6= ij.
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the offer. If j rejects the offer, both players remain active, and the game moves to the next

stage. Otherwise, players i and j become inactive, and their final payoffs are determined by

the discounted value of the shares that they have agreed upon. In particular, the value at the

beginning of the game to players i and j of reaching an agreement xji at stage t is

uj = δt−1xji and ui = δt−1(sij − xji).

In the next stage the proposer is selected according to the same probability distribution.12

If an inactive player is selected the game moves to the subsequent period. The game ends

when the surplus generated by any pair of active players is zero. The structure of the game is

common knowledge among players. Information is perfect. Thus, all players observe any offer

previously made and the corresponding acceptance decision.

Histories and Strategies: Denote the set of histories at date t observed by any player after

the new proposer has been selected by H t = N× [N2 × R+ × {0, 1}]t−1
. Such histories consist

of the identity of the current proposer, the identities of past proposers, whom they offered to,

the offer they made and whether the offer was accepted or rejected. Denote the set of histories

of length t observed after an offer has been made by Rt = N × R+ ×H t. Let R = ∪tRt and

H = ∪tH t. Finally, let Hi denote the subset of histories in H in which player i is the proposer,

and let Ri denote the subset of histories in R in which player i is the responder.

We say that player i ∈ N is active at history h ∈ H if player i has never accepted an offer

and has never made an offer that was accepted. For any history h ∈ H, let A(h) ⊆ N denote

the set of active players after history h. Throughout, the operator ∆(·) denotes the simplex

of a finite set. The strategy of an active player i ∈ A(h) when making an offer consists of a

pair of functions, ρi and χi, such that

ρi(h) ∈ ∆(A(h)) and χi(h) ∈ R|A(h)|
+ for h ∈ Hi.

The first map ρi(h) describes the probability distribution over players who may receive an

offer from i at any given history, while the second map χi(h) identifies the amount of surplus

that i would offer to each potential partner. The strategy of an active player i ∈ A(h) when

receiving an offer instead consists a single function, αi, such that

αi(h) ∈ [0, 1] for h ∈ Ri.

The map αi(h) describes the probability that an offer is accepted. Strategy profiles are denoted

12Results are unaffected by updating proposal probabilities conditional on being active. However, we opted
to keep the expected time to propose of each player stationary across periods.
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by omitting the dependence on players, (ρ, χ, α) = {ρi, χi, αi}i∈N .

4 MPE Existence and Characterization

The analysis restricts attention to stationary Markov perfect equilibria in which strategies

depend only on the set of active players in the game.

Definition 1 A subgame perfect equilibrium (ρ, χ, α) is a Markov perfect equilibrium (MPE)

if strategies coincide whenever active player sets coincide. That is, for any two histories

h, h′ ∈ H such that A(h) = A(h′):

[1] ρ(h) = ρ(h′) and χ(h) = χ(h′),

[2] α(i, x|h) = α(i, x|h′) for any offer (i, x) ∈ N × R+.

Strategies are stationary as calendar date is not part of the Markov state. As we only consider

stationary MPE, we often omit the word “stationary” and make the dependence on the active

player set explicit (thereby omitting the dependence on histories). Notation
(
ρδ, χδ, αδ

)
will

occasionally be used to clarify that equilibrium strategies may also depend on the discount

factor δ. But, we omit this dependence when redundant.

Some of the results consider MPE behavior in the limit as the discount factor converges

to 1. To simplify the discussion we introduce a notion of limiting equilibrium.

Definition 2 A limiting Markov perfect equilibrium (LMPE) (ρ̄, χ̄, ᾱ) is the limit of a selec-

tion
{
ρδ, χδ, αδ

}1

δ=0
from the MPE correspondence as δ converges to 1.

Throughout the text the expression equilibrium will refer to an MPE, and the expression

limiting equilibrium will refer to an LMPE.

In order to simplify notation, we invoke the following two conventions for all i, j ∈ A

A\i = A\{i} and A\ij = A\{i, j}.

For any MPE (ρ, χ, α) and any set of players A ⊆ N , let πij(A) denote the agreement probability

between players i ∈ A and j ∈ A\i when i is selected to make an offer,

πij(A) = ρi(j|A)︸ ︷︷ ︸
Pr(i offers to j)

· αj(i, χi(j|A)|A)︸ ︷︷ ︸
Pr(j accepts)

,

and let πii(A) denote the probability that i does not reach agreement when selected to make

an offer,

πii(A) = 1−
∑
j∈A\i

πij(A).
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Also, let Vi(A) denote the expected payoff – or equivalently value – of an active player i at

the beginning of a subgame in which the set of active players is A, and let vi(A) denote the

MPE value of an active player i when he is chosen to be the proposer.

We begin by proving equilibrium existence and by providing a preliminary characteriza-

tion of equilibrium bargaining values. For convenience, let pA =
∑

j∈Apj. The character-

ization allows for mixed strategy equilibria. Fix an active player set A and consider any

Markovian strategy profile (ρ, χ, α) and its associated values and agreement probabilities

(π, V ) ∈ [∆(A)× R]|A|, where we omit the dependence on A for clarity. As in numerous

bargaining models, subgame perfection dictates that a proposer never offers to another player

more than that player’s present discounted value of staying in the game. As players can choose

whom to bargain with, proposers necessarily offer to those players who leave them with the

highest surplus, argmaxj∈A\i {sij − δVj}, whenever such surplus exceeds the value of remain-

ing unmatched, δVi. It follows that for any active player set A ⊆ N , MPE values V (A) for

any player i ∈ A must be a fixed point of the following system of value equations

vi = max{δVi,maxj∈A\i{sij − δVj}},

Vi = pivi︸︷︷︸
i proposes

+
∑

j∈A\ipj[ (πji + πjj)δVi︸ ︷︷ ︸
j agrees with i or delays

+
∑

k∈A\ijπjkδVi(A\jk)︸ ︷︷ ︸
j agrees with k 6=i,j

] + (1− pA)δVi︸ ︷︷ ︸
no player proposes

,

for some profile of agreement probabilities π(A) satisfying

πij = 0 if vi > sij − δVj and j 6= i,

πii = 0 if vi > δVi.
(1)

Proposition 1 An MPE exists. Moreover, {π(A), V (A)}A⊆N is a profile of MPE values and

agreement probabilities if and only if it solves system (1) at any active player set A ⊆ N .

Existence is proved by applying Kakutani’s fixed point theorem. The result extends Propo-

sition 1 and Lemma 1 in Abreu and Manea (2012b) to environments in which players are

allowed to choose whom to offer to and in which the surplus generated in a match depends on

the identity of the players. While MPE are not unique, MPE values are uniquely determined

by MPE agreement probabilities.

The result implies that no player i ∈ A can delay with an active player set A in equilibrium

if there exists a player j ∈ A such that δVi + δVj < sij. Thus, in any MPE displaying on-path

delay it must be that δVi + δVj ≥ sij at some on-path subgame. Moreover, as Vi and Vj are a

discounted weighted average of the possible future agreements i and j can reach on-path, if i

and j delay they must collectively expect higher payoffs from delaying and letting the market

evolve than from reaching agreement now.
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5 Efficiency, Welfare and Delay

Next, we introduce the two efficiency criteria and the notion of delay that will be analyzed in

the following sections. Let E denote the set of unmatched players in the core of the original

assignment economy, E = {i ∈ N |η(i) = i}, and let C(N) denote the set of possible active

player sets that may arise as core matches are removed from the game,

C(N) = {A|A = ∪i∈M{i, η(i)} ∪ E for some M ⊆ N} .

We are interested at active player sets in C(N) as only such subgames can arise with positive

probability in equilibria in which players eventually match efficiently. The properties of the

core imply that the core partner of every player must coincide at all active player sets A ∈
C(N).

Consider a social planner who is able to impose terms of trade and agreement probabilities,

but is otherwise constrained by the environment of the game. For a high enough discount

factor, this constrained social planner will implement only efficient matches and will do so at

the first available opportunity. An MPE with these features is said to be strongly efficient. It

requires that every player who is matched in the core of the assignment economy agrees on

a division of surplus with his core partner at the very first opportunity. One way in which

surplus can be lost is through delay. However, when delay costs are small (that is, when δ

is close to 1) little surplus is dissipated by deferring agreements. We therefore also consider

a weaker efficiency criterion that only requires players to eventually match with their core

partners. An MPE is thus said to be weakly efficient if all players eventually agree on a

division of surplus with their core partners.13

Definition 3 Consider an MPE (ρ, χ, α). If for all A ∈ C(N):

• πiη(i)(A) = 1 for all i ∈ A, the MPE is strongly efficient;

• πiη(i)(A) + πii(A) = 1 for all i ∈ A and
∑

j∈A\E
πjη(j)(A) > 0, the MPE is weakly efficient.

Neither efficiency criterion is satisfied when an inefficient match obtains with positive proba-

bility. As we assume δ < 1, this may rule out instances in which an inefficient match occurs

with vanishingly small probability as δ → 1. To address these we apply the two efficiency

criteria to the limiting equilibria. For convenience, given a profile MPE
(
ρδ, χδ, αδ

)
for all

13In terms of utilitarian welfare, for all δ sufficiently high, strongly efficient MPE maximize the ex-ante sum
of expected payoffs, whereas weakly efficient MPE will not unless they are also strongly efficient. Even in
strongly efficient MPE, however, the sum of values is necessarily below total surplus, as it takes time for the
core match to form. Moreover, in a strongly efficient MPE all active player sets in C(N) obtain with positive
probability. But, this is not the case for weakly efficient MPE, as the market may clear sequentially.
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δ < 1, define limiting agreement probabilities as π̄ij(A) = limδ→1 π
δ
ij(A) for all i, j ∈ A and

the limiting values as V̄i(A) = limδ→1 V
δ
i (A) for all i ∈ A (when these limits exist).

Definition 4 Consider an LMPE (ρ̄, χ̄, ᾱ). If for all A ∈ C(N):

• π̄iη(i)(A) = 1 for all i ∈ A, the LMPE is strongly efficient;

• π̄iη(i)(A)+ π̄ii(A) = 1 for all i ∈ A and
∑

j∈A\E
π̄jη(j)(A) > 0, the LMPE is weakly efficient.

While both strongly and weakly efficient LMPE generate the same surplus in the limit, it is

instructive to separate them for the purpose of classifying limiting efficient equilibrium play.

The strong and weak efficiency taxonomy parses efficiency loss through inefficient matching

versus inefficient delay. When applying our efficiency criteria to LMPE, it is worthwhile noting

that active player sets outside C(N) may now occur with positive probability for all δ < 1.

As customary, refer to the sum of ex-ante values,
∑

i∈N Vi(N), as utilitarian welfare. The

next proposition establishes that utilitarian welfare converges to total surplus,
∑

i∈Nsiη(i), as

δ → 1 in any weakly efficient LMPE. This motivates our efficiency criterion by showing that

no welfare can be lost from delay in any such equilibrium.

Proposition 2 Any weakly efficient LMPE maximizes surplus,

∑
i∈N V̄i(N) =

∑
i∈Nsiη(i).

The result is intuitive and relies on delay costs vanishing at a sufficiently fast rate as δ → 1.

Since weakly efficient LMPE maximize utilitarian welfare, Proposition 2 implies that these

equilibria are always “asymptotically efficient” as defined in Abreu and Manea (2012a, 2012b).

In principle though, asymptotically efficient LMPE may exists in which players match ineffi-

ciently at active player sets that belong to C(N), but that do not materialize on the equilibrium

path.14 Limiting weak efficiency refines asymptotic efficiency by requiring the equilibrium to

be asymptotically efficient at any active player set in C(N), and not just at those active player

sets which are reached with positive probability on path. In doing so, it rules out asymptoti-

cally efficient equilibria which are sustained by the threat of inefficient matching at some core

subgame, instead requiring the consistent selection of efficient equilibria throughout all sub-

games that can be reached following efficient matching. Relative to earlier studies, the stronger

14If the short side of the market has at most two players, mini |Pi| = 2, then all LMPE must be weakly
efficient in any core subgame A 6= N . Thus, all asymptotically efficient equilibria must be weakly efficient
LMPE. Moreover, any asymptotically efficient equilibrium, in which all players in A\E agree with positive
probability in every subgame A ∈ C(N), must be a weakly efficient LMPE.
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welfare criterion allows a novel approach which entails: disciplining limiting agreement proba-

bilities in all core subgames; and then exploiting the recursive structure of stationary equilibria

to derive stronger implications on efficient equilibrium payoffs and on their existence.

Our notion of equilibrium delay requires the existence of a player with a positive value

who chooses to forgo the option to make an acceptable offer with positive probability.

Definition 5 An MPE (ρ, χ, α) displays delay if for some A ⊆ N and some player i ∈ A

Vi(A) > 0 and πii(A) > 0.

The definition applies only to players with a positive value, as it is immediate that players with

zero continuation value might well prefer to disagree. In Section 6, we present two examples

in which a player with a positive continuation value chooses to delay on the equilibrium path.

6 Examples

Before proceeding to the main analysis, consider a few examples to illustrate the model, the

solution concepts, the efficiency definitions and to preview some of the main conclusions. The

first example establishes that equilibrium mismatch can occur. The second shows how mis-

match inefficiencies can occur for δ < 1, but disappear in the limit; so that there is a strongly

efficient limiting equilibrium. The third demonstrates on-path equilibrium delay, and the

fourth shows a weakly efficient limiting equilibrium in which players delay and endogenously

exit the market in a fixed sequence. These examples can be skipped.

Example 1: Consider an assignment economy populated by four players who propose with

equal probabilities. Surpluses in the market are as depicted in Panel I of Figure 1.

a

b

c

d

100 y 100

(I)

a

b

c

d

(II)

a

b

c

d

q

q

(III)

a

b

c

d

(IV)

a

b

c

d

(V)

Figure 1: Panel I displays the assignment economy. MPE agreement probabilities πij(N) are
shown: in Panel II for y ∈ [0, 100]; in Panel III for y ∈ (100, 143]; in Panel IV for y ∈ [144, 200];
in Panel V for y ∈ (200,∞). An arrow between two players represents a positive agreement
probability. A self-arrow represents a positive disagreement probability.

The unique efficient assignment matches player a to b and player c to d whenever y < 200,

while it matches only player a to d when y > 200. Multiple core assignments exist at y = 200.
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Proposition 1 can be used to derive MPE payoffs and strategies in this game for any discount

factor. To make the discussion more transparent, suppose that the discount factor is close to

unity. When y ≤ 100, players only make offers to their their core partners. It is then as if

each player bargains bilaterally with their efficient partner and all players achieve an LMPE

payoff of 50. Given this no player is ever tempted to offer to anyone other than their core

match. These equilibrium offer strategies for active players A = {a, b, c, d} are shown in Panel

II of Figure 1.

For values of y ∈ (100, 200), bilateral bargaining cannot be a solution. Indeed, if everyone

only offered to their efficient match, players a and d would both have a profitable deviation

to offer to each other. When y ∈ (100, 1000/7), players a and d randomize in equilibrium

between offering to their respective core matches and bargaining with each other (Panel III of

Figure 1). By offering to each other with positive probability, a and d reduce the continuation

values of their efficient partners. In equilibrium they do this until they are indifferent between

offering to each other and to their efficient partners. As y increases, this requires the strong

players to offer to each other with higher probability, and at y = 1000/7 they reach the corner

solution in which indifference requires them to offer to each other with probability 1. As y

grows further to y ∈ [1000/7, 200), players a and d continue to offer only to each other, and

still accept offers made by their respective core matches (Panel IV of Figure 1). There is now

mismatch with probability 1/2. Despite this inefficiency, the unique equilibrium is in pure

strategies.15

Figure 2: The plot depicts the payoffs, the MPE surplus and the efficient surplus as a function
of sad = y for Example 1. The payoff of players a and d is denoted by Va, whereas Vb denotes
the payoff of b and c.

15For y ∈ (100, 1000/7), in the limit as δ → 1 players a and d make offers to their respective core partners

with probability q = (2
√

2y2 − 600y + 50000− y)/(200− y) ∈ (0, 1), the unique LMPE payoff of players a and
d amounts to Va = (y + 50 + 50q)/(3 + q), while that of players b and c amounts to Vb = Va − y + 100. For
y ∈ [1000/7, 200), the LMPE payoff of a and d further increases to Va = (y + 50)/3, whereas that of b and c
decreases to Vb = (400− y)/12.
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The final case is the one in which y > 200, and in which the efficient assignment matches

player a to d. If so, players a and d continue offering to each other with probability 1. However,

b and c stop making offers to players a and d, as any acceptable offer would have to exceed the

entire surplus in the relevant relationship (Panel V of Figure 1). This change affects limiting

payoffs discontinuously. When y < 200, player b always makes an acceptable offer to a, leaving

c to bargain bilaterally with d with probability 1/4. Thus, c gets a limiting payoff of 50 with

probability 1/4. For y > 200, however, b stops making acceptable offers to a, and so c receives

a payoff of 0 with certainty. Note that this discontinuity occurs precisely at the value of y for

which the core match is not unique. Figure 2 depicts LMPE values and surplus for all y.

Example 2: The next example shows that alternative matches which cannot be lost can

act like outside options and bound payoffs while being exercised with probability 0 as players

become arbitrarily patient.

e

f

c

108

(I)

e

f

c
q

(II)

Figure 3: Panel I displays the assignment economy, while Panel II displays MPE agreement.
The limiting equilibrium shown is strongly efficient as limδ→1 q

δ = 0.

Consider the three-player market depicted in Panel I of Figure 3. The unique core match of the

market matches players e and f , leaving c unmatched. Assume again that players propose with

equal probability and that discount factors are sufficiently close to unity. If so, players e and

f offer to each other with probability 1 in the unique MPE, whereas player c offers to player

f with probability qδ ∈ (0, 1), where limδ→1 q
δ = 0. Although qδ → 0 in the limit, the mere

presence of player c significantly affects bargaining outcomes. Players e and f would share the

10 units of surplus evenly were they to bargain in solitude. However, because c never exits

the market, he acts like an outside option for f . Indeed, player f extracts the same limiting

surplus that he would get were he to bargain in solitude with player e while having access to

an outside option with value 8. The limiting payoffs converge to 8 for player f , to 2 for player

e, and to 0 for player c. Even though player c does not make an acceptable offer in the limit,

the equilibrium does not display delay by our definition, because the payoff of player c equals

exactly 0 for all δ sufficiently close to 1. While the equilibrium described is not strongly or

weakly efficient for δ < 1, because there is then positive probability of mismatch, in the limit

that probability converges zero, and so the limiting equilibrium is strongly efficient.16

16For δ close to 1, in the unique MPE of this example we have that Vc(N) = 0, Ve(N) = (26δ − 24)/δ,
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Example 3: In example 1, we saw that mismatch could arise when players feared loosing

valuable alternative matches. The next example shows that on-path delay can occur when

players expect the market to evolve in their favor.

a

b

c

d

e

f

100 180 100 108

(I)

ca

b d

e

f

(II)

Figure 4: Panel I displays the assignment economy, while Panel II displays MPE agreement.
Player f delays with probability 1.

Consider the six-player assignment economy depicted in Panel I of Figure 4, in which agents

are selected to propose with equal probability. We show an equilibrium exists in which f delays

making offers with probability 1 when selected to propose if all other players are still active

in the market. Panel II of Figure 4 shows the equilibrium offer strategies in this MPE. To

solve this game, we use backward induction. Under the proposed equilibrium, if the protocol

selects agent e as the first proposer, agent e makes an offer to agent f that will be accepted.

If so, the remaining subgame coincides precisely with the game discussed in Example 1, so we

know the MPE payoffs for all the remaining players in the subgame. If agent c is selected as

the first proposer and agrees with d, then in the following subgame agents e and f bargain

bilaterally, as do agents a and b. If agents a or d are selected as the first proposers instead,

then agent b must remain unmatched, while agents c, e, and f are left in precisely the subgame

we considered in Example 2. Finally, if agent b is the first proposer, he agrees with a, and

players c, d, e, and f are left in a subgame. While we have not solved this subgame yet, in

the unique MPE all players offer to their efficient partner like in Example 1. Limit payoffs for

c, d, e and f are then 50, 50, 5 and 5. With these subgames in mind, it is easy to write down

the value equations for the six agents and solve them. For instance, the value equation for

agent c simply amounts to

Vc(N) = p[ 2δVc(E2)︸ ︷︷ ︸
a or d propose

+ δVc(c, d)︸ ︷︷ ︸
b proposes

+ (100− δVd(N))︸ ︷︷ ︸
c proposes

+ δVc(E1)︸ ︷︷ ︸
e proposes

+ δVc(N)︸ ︷︷ ︸
f delays

],

where Vc(Ei) denotes the value of player c in Example i ∈ {1, 2}. Solving the value functions

establishes that no player has a profitable deviation from the proposed strategies and that

player f must delay for all sufficiently high values of δ. Taking limits as δ → 1 the payoffs

Vf (N) = 8/δ and q = (27δ2 − 63δ + 36)/(13δ2 − 12).
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of the six players converge to V (N) = (55/3, 230/3, 230/3, 55/3, 13/2, 7/2). Agents a through

d achieve the same limiting values as in Example 1. The additional option available to c (of

matching with f) does not improve c’s terms of trade as it never binds. Nevertheless, the

option of matching to c incentivizes f to delay. There is positive probability that a and d will

reach agreement first, and in this case f ’s bargaining position with e improves. While such

threats are factored into the limiting payoff of e, and f ends up indifferent between delaying

and making an offer to e when selected to propose first, f must delay with certainty to extract

the maximum possible equilibrium value out of his potential future outside option.17

Example 4: In example 1, alternative matches which were lost with positive probability did

not act like outside options; in example 2 instead, alternative matches which never exited the

market did act like outside options with limiting patience. The final example shows that there

is another way in which matches can act as outside options without distorting trade. There

can be sequential exit, in that all but one pair of players delay with probability 1 in the limit.

For those players everyone else waits for, alternative matches never exit the market before

them and can act like outside options.

a
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(I)

a

b

c

d
q

(II)

Figure 5: Panel I displays the assignment economy, while Panel II displays MPE agreement.
The LMPE features sequential exit. As limδ→1 q

δ = 0, in the limit c and d wait for a and b to
reach an agreement before reaching an agreement themselves.

Consider the market depicted in Panel I of Figure 5. This market is vertically differentiated.

Both b and d generate a higher surplus with a than c, while both a and c generate more surplus

with b than d. Vertical differentiation is so strong that the match between a and b generates

ten times more surplus than the match between c and d. The efficient match is assortative,

and matches a to b and c to d. There is no strongly or weakly efficient MPE for δ < 1, and

no strongly efficient LMPE in this example. There is, however, a weakly efficient LMPE. For

high enough δ < 1 there is an MPE in which player c delays with probability 1, player d agrees

with a with probability qδ > 0 and delays with probability 1− qδ, while a and b always agree

17Delay in this example is driven only by the endogenous evolution of bargaining positions. Players can
choose whom to bargain with (which implies that no player has to delay to be matched to his equilibrium
partner), and the efficient match is unique (which shuts down possible coordination problems among players).
In Section 2 of the online appendix, we show that when multiple efficient matches exist, delay can arise just
because players fail to coordinate on one of the efficient matches.
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with each other. Moreover, limδ→1 q
δ = 0, so in the limit c and d both delay with probability 1

and wait for a and b to reach agreement before bargaining with each other. The market thus

clears from the top. The limit payoffs of c and d are 5, a receives 80 and b gets 20.

7 MPE Efficiency and Frictions

We now present the main conclusions on equilibrium welfare. The analysis begins by charac-

terizing payoffs in any efficient MPE and by deriving necessary and sufficient conditions for

the existence of such MPE for δ close to 1. These conditions relate the primitives of the bar-

gaining model to the core of the assignment economy. The second part of the section derives

similar conclusions for limiting equilibria, and identifies when alternative matches can serve

outside options affecting bargaining outcomes without distorting trade. Broadly, the analysis

establishes that inefficiency is a necessary feature of all MPE in which players’ bargaining

positions evolve as others reach agreement. An efficient MPE exist only when each pair of effi-

ciently matched players can bargain in isolation, ignoring the market context, without having

a profitable deviation (outside options provided by alternative matching opportunities cannot

bind). The results for limiting efficient MPE provide the same message, but are more subtle.

Agents cannot have binding temporary outside options, provided by matching opportunities to

players who may exit the market before them, but can have binding permanent outside options,

provided by matching opportunities to players who never exit the market before them.

Efficient Equilibria and Payoffs: To state results, it is useful to introduce three relevant

payoff profiles. The first of these identifies the LMPE values that players would achieve while

bargaining bilaterally with their core match. For any player i ∈ N , let σi denote the Rubinstein

payoff of player i,

σi =
pi

pi + pη(i)

siη(i).

The second profile identifies the highest payoff that players could achieve while offering to

players that are unmatched in the core of the assignment economy. For any player i ∈ N , let

ωi denote the outside payoff of player i,

ωi = maxj∈E∪i sij.

In the bargaining game, players that are unmatched in the core act as permanent outside

options in efficient equilibria, as they never exit the market. The third and final profile

identifies the LMPE payoffs that players would achieve while bargaining bilaterally with their

core match when facing permanent outside options equal to ω (Shaked and Sutton (1984),
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Sutton (1986), Binmore and Herrero (1988)). For any player i ∈ N , let σ̄i denote the shifted

Rubinstein payoff,

σ̄i =


ωi if ωi ≥ σi

siη(i) − ωη(i) if ωη(i) ≥ ση(i)

σi otherwise

.

Outside options cannot bind for both players in a core match. If they did, an alternative match

that generates a weakly higher surplus would be feasible (as outside options are unmatched

in the core). But, that would contradict the optimality of the core match or its uniqueness.

While we will identify necessary and sufficient conditions for the existence of an MPE

which is efficient, it will be helpful to highlight two potentially separate sources of distortions,

namely, inefficient matching and delay in reaching agreements. Both distortions are driven

by the endogenous evolution of bargaining power that results from the random order of play.

But, whereas mismatch is necessarily a hard friction, as it permanently destroys surplus,

delay can be a soft friction, in that its effects on welfare can become negligible when discount

factors are sufficiently close to unity. Proposition 3 establishes that delay cannot be the sole

source of frictions in the model, as mismatch is necessary for delay. Pinning down weakly

efficient equilibria thus amounts to identifying strongly efficient equilibria. The proposition

also characterizes equilibrium payoffs in any efficient MPE.

Proposition 3 Any weakly efficient MPE is strongly efficient. Moreover, in any subgame

A ∈ C(N) of any weakly efficient MPE, payoffs amount to

Vi(A) =

(
pi

(1− δ) + δ(pi + pη(i))

)
siη(i) for all i ∈ A.

The proof shows that players never delay in any weakly efficient equilibrium as delay necessarily

weakens their bargaining position relative to their core match. Payoffs are then derived by

simple manipulation and the observation that behavior in subgames that are off the equilibrium

path cannot affect the terms of trade in any equilibrium path subgame, as players could reach

such subgames only by exiting the game. As strongly efficient MPE coincide with weakly

efficient MPE, henceforth we simply refer to them as efficient equilibria. Efficient MPE payoffs

are stationary and independent of the set of active players along the equilibrium path, and

converge to Rubinstein payoffs. When the cost of delaying is non-negligible, bargaining is

efficient only when alternative matches have no effect on outcomes and players achieve the

same payoff they would get by bargaining with their efficient match in solitude.

To understand matching incentives in the model consider the case in which delay costs

are large. If so, players have strong motive to negotiate only with their preferred bargaining
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partners as the cost of rejecting offers is extremely high. If so, equilibrium matching could be

efficient only if matching with one’s core partner would generate at least as much surplus as

matching with any other player. Indeed, the existence of an efficient MPE requires players’

preferred bargaining partners to coincide with their core partners when delay costs are large.

The next remark formalizes these observations. If for some ε > 0 an efficient MPE exists for

any δ ∈ (0, 1) such that |x− δ| ≤ ε, we say that an efficient MPE exists for all values of δ

close to x. A preferred match18 µ at an active player set A ⊆ N is a map µ : A → A that

satisfies

siµ(i) = maxj∈A sij for all i ∈ A.

Remark 1 For all δ close to 0:

(a) all MPE maximize utilitarian welfare if the preferred match is unique at all A ⊆ N ;

(b) an efficient MPE exists if the core match is the unique preferred match at N ;

(c) an efficient MPE exists only if the core match is a preferred match at N .

For δ sufficiently high, an MPE maximizes utilitarian welfare if and only if it satisfies our

efficiency criterion.19 However, for low δ this is no longer the case. When delay costs are suf-

ficiently high, maximizing welfare may require matching players contingent on the realization

of the sequence of proposers. In particular, for sufficiently low δ, utilitarian welfare is maxi-

mized when players agree with their preferred match, as delay costs dominate any allocative

efficiency consideration.

To provide a comparison with the high δ case and different bargaining protocols, Remark

1 part (b) considers when the core match will be reached. In our directed bargaining protocol,

this occurs when players’ preferred match coincides with their core match; in other words,

when players prefer to bargain bilaterally with their core match without negotiating with any

other partner. In contrast, classical random matching models, such as Gale and Sabourian

(2006) and Abreu and Manea (2012b), never implement the core match with probability 1, as

in these models players would agree with anyone they meet when δ is sufficiently low.

It is easy to find examples of inefficient equilibria that do not maximize welfare for in-

termediate costs of delay. However, inefficiencies may be driven by the large costs associated

with disagreement. Indeed, one could interpret discounting as the source of matching frictions.

However, the next results consider only the case in which delay costs are sufficiently small.

Nevertheless, inefficiencies do not vanish.

18A preferred match may not be a match as µ(µ(i)) 6= i.
19When δ is close to 1, an MPE maximizes utilitarian welfare if and only if it is strongly efficient. But by

Proposition 3 the set of weakly and strongly efficient MPE coincide.
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Proposition 4 An efficient MPE exists for all δ close to 1:

(a) if Rubinstein payoffs are in the interior of the core,

σi + σj > sij for all i, j ∈ N such that j 6= η(i); (2)

(b) only if Rubinstein payoffs are in the core,

σi + σj ≥ sij for all i, j ∈ N . (3)

Proposition 4 shows that, whenever Rubinstein payoffs do not belong to the core, players

must agree with partners other than their core match with positive probability. When players

consider agreeing with their respective core matches, the other active players act as fictitious

outside options. But for these outside options to affect bargaining outcomes, these options

must sometimes be exercised.20 Such behavior however necessarily leads to mismatch, surplus

dissipation, and possibly delay. Only when Rubinstein payoffs live in the core of the assignment

economy, is there an efficient MPE.21 The sufficient condition for the existence of an efficient

MPE is intuitive, but does not guarantee that every Markovian equilibrium is efficient. Indeed,

Section 1 of the online appendix presents an example in which condition (2) holds, but in which

multiple MPE exist for all δ close to 1. Coordination problems in offer strategies are the source

of the multiplicity.22

Proposition 4 establishes that bargaining inefficiencies are pervasive when negotiations are

decentralized and take place in a market context (for instance, if workers’ possible alternative

vacancies affect the wages they are able to negotiate). In particular, the result implies that

bargaining is inefficient whenever the market context matters. In other words, markets are

able to clear efficiently only when all players can optimally bargain bilaterally with their

efficient partners, ignoring all alternatives. Moreover, these inefficiencies persist even when the

discount factor is high and the exogenous frictions imposed by time preferences and sequential

play become small. In Section 8, we explore the consequences of Proposition 4 in classical

labor market settings, and show that vertical differentiation and increasing differences are not

20Consider again Example 1, and in particular panel III of Figure 1, so that y ∈ (100, 143]. Suppose an
efficient equilibrium is played, and so, by Proposition 3, q = 1. A strategy available to b is to reject all offers
from a and to delay when selected to be the proposer until c and d exit the market. Doing so will result in a
bargaining bilaterally with b in the resulting subgame, and in the limit, b will obtain a payoff of 50. Thus, for
a to receive a limiting payoff greater than 50, a must exercise his temporary outside option and inefficiently
match to d with positive probability in equilibrium.

21Our result does not speak to the non-generic case in which Rubinstein payoffs are on the boundary of
the core. In such cases a discount factor equal to 1 may be required to guarantee the existence of an efficient
MPE. In Section 2 of the online appendix, we show why no conclusive result is possible in such cases.

22It would be compelling to conclude by arguing that if an MPE exists for arbitrarily high and low values
of δ that implements the core match, then it also exists for any intermediate value. However, the incentive
constraints characterizing such MPE are quadratic in δ and this conclusion does not hold in general.
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sufficient for the existence of an efficient equilibrium.

To further explore the key conditions in Proposition 4, we apply the definition of Rubinstein

payoffs. The existence of an efficient MPE then requires that, for all i and j,(
pi

pi + pη(i)

)
siη(i) +

(
pj

pj + pη(j)

)
sjη(j) ≥ sij.

An interesting special case is when a social norm determines the relative bargaining power

of firms to workers in labor markets. For instance, all agents on one side of the market may

propose with the same probability p1, while all agents on the other side of the market may

propose with the same probability p2. If so, the condition simplifies to(
p1

p1 + p2

)
siη(i) +

(
p2

p1 + p2

)
sjη(j) ≥ sij,

for all i ∈ P1 and j ∈ P2. So, there is an efficient MPE only if, for each worker-firm pair

in the economy, a weighted average of the surplus in the worker’s efficient match and in the

firm’s efficient match weakly exceeds the surplus that pair could generate together. Weights

capture the bargaining power of workers relative to firms, and both surpluses are weighted

equally when p1 = p2. In many cases, like example 1, there does not exist any values of p1

and p2 that satisfy the above condition and so there is no social norm of this form that can

eliminate inefficiencies.

The conclusions on efficiency have several implications, which are summarized in the next

remark. These imply that: (a) any core payoff can be implemented as an LMPE by appro-

priately selecting the vector of proposal probabilities; (b) for any pair {i, η(i)}, proportional

changes in proposal probabilities cannot affect limiting bargaining outcomes; (c) efficiency is

easier to achieve in economies which have a large core; (d) any MPE without on-path delay

must lead to agreement on the core match with positive probability. For convenience, say that

surpluses S support more core payoffs than S ′ in the strong set order if any core payoff profile

in S ′ is also a core payoff profile in S.23

Remark 2 The following are consequences of Proposition 4:

(a) As δ → 1, any interior core payoff is an MPE payoff for some probabilities p ∈ ∆(N).

(b) If an efficient MPE exists for all δ close to 1 for probabilities p′, then it also exists for all

δ close to 1 for probabilities p such that pi/pη(i) = p′i/p
′
η(i) for all i ∈ N .

(c) If an efficient MPE exists for all δ close to 1 for surpluses S ′, then it also exists for all δ

close to 1 for surpluses S that support more core payoffs than S ′.

23For instance, S supports more core payoffs than S′ if for all i ∈ N : sij = s′ij whenever j = η(i); and
sij ≤ s′ij whenever j 6= η(i).
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(d) The core match obtains with strictly positive probability in any MPE without on-path delay.

The first part of the result implies that the closure of the set of MPE payoffs that obtain for

some proposal probabilities contains the core of the assignment economy. Thus, the core can

be spanned by varying proposal probabilities. As the assumptions imposed on the assignment

economy imply that the interior of the core is non-empty, for any such surplus matrix it is

possible to find proposer probabilities that guarantee the existence of an efficient MPE. By

interpreting players’ proposal probability as their bargaining power, the second part shows

that when delay costs are small a player’s bargaining power matters only relative to that of

his efficient match in any efficient MPE. The third part implies that economies with larger

cores are more likely to result in efficient bargaining outcomes. The final part obtains because

in any MPE without on-path delay it is impossible to find a subset of players who prefer

to exchange their respective core matches, and thus some players must optimally agree with

their efficient match. However, as we saw in Examples 3 and 4, on path delay can occur in

equilibrium and the no delay condition is non-trivial.24

Limiting Efficiency: Efficient LMPE may differ considerably from efficient MPE. Proposi-

tion 4 considers only δ < 1 and so categorizes as inefficient any equilibrium in which mismatch

occurs with a vanishingly small probability as δ converges to 1. Moreover, Examples 2 and

4 establish that mismatch can occur in equilibrium with vanishingly small probability. This

section studies this possibility asking when inefficiencies can be small in this sense.

The first result of this section extends Proposition 3 showing that strongly efficient LMPE

converge to shifted Rubinstein payoffs. Whenever these payoffs differ from Rubinstein payoffs

and delay is costless, unmatched players in E can act as permanent outside options without

distorting the limiting equilibrium match. In Example 2, for instance, player c had an effect

on player f ’s terms of trade in the limit without ever matching to f . The result also extends

the negative efficiency conclusions of Proposition 4 to markets in which delay costs vanish. In

the limit, equilibria cannot be efficient if shifted Rubinstein payoffs are outside the core of the

assignment economy.

Proposition 5 In any strongly efficient LMPE, the payoff of any player i ∈ A in any

equilibrium-path subgame A ∈ C(N) converges to

limδ→1 Vi(A) = σ̄i.

24We stress again that Example 2 does not fit our definition of equilibrium delay, as in the unique LMPE
the only player who delays has a continuation value equal to zero.
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Moreover, a strongly efficient LMPE exists only if shifted Rubinstein payoffs are in the core,

σ̄i + σ̄j ≥ sij for all i, j ∈ N . (4)

Core unmatched players can affect the limiting terms of trade without ever agreeing, because

they belong to every equilibrium path subgame. Core matched players, instead, cannot play

such a role in a strongly efficient LMPE as, in the limit, they exit the game at the first available

instance by agreeing with their core match. In addition to demonstrating the robustness of the

conclusions previously reached, Proposition 5 uncovers a crucial difference between temporary

alternative matches that can be lost as the market evolves and permanent alternative matches

that cannot be lost as the market evolves. We term the former temporary outside options

and the latter permanent outside options. Furthermore, the result clarifies why bargaining

frictions arise endogenously as a strategic response to possible changes in market composition.

It is the concern of an alternative match exiting the market, thereby weakening the bargaining

position of a player, that induces this player to agree with an inefficient partner even when δ

converges to 1. As we have seen in Example 3, similar considerations regarding the evolution

of the market can also lead to delay on equilibrium path.

When shifted Rubinstein payoffs are in the interior of the core, they coincide with Rubin-

stein payoffs by construction. If so, by Proposition 4 an efficient equilibrium exists for any

sufficiently high value of δ, and thus a strongly efficient LMPE exists in this case. Strongly

efficient LMPE may also exist even when shifted Rubinstein payoffs are on the boundary of

the core, as was the case in Example 2. If so, distortions vanish only when the discount factor

approaches unity.

Next, we consider weakly efficient LMPE and their properties. The main result establishes

that, whereas only core unmatched players can act as permanent outside options in strongly

efficient LMPE, all players can potentially act as permanent outside options in some weakly

efficient LMPE. However, for this to be the case, the market must clear sequentially, one core

match at a time. If so, even players who are ultimately matched can act as permanent outside

options by only matching after some other players have matched. To formalize the discussion

it is convenient to introduce a notion of sequential agreement.

Definition 6 A weakly efficient LMPE is a sequential LMPE, if for some A ∈ C(N) such

that |A\E| ≥ 4 and for some i ∈ A\E

limδ→1 πjj(A) = 1 for any j ∈ A\iη(i). (5)

Sequential LMPE display sequential agreement in that all players in the market, except for

one pair, delay reaching an agreement until that pair has exited the market. Sequential
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equilibria require extensive delay to occur despite delay being costly. In particular, pairs

who will eventually be matched with probability 1 have to prefer to delay instead of reaching

agreement with each other, even though doing so reduces the value of any agreement they can

reach. None of the earlier literature, including the examples in Gale and Sabourian (2006)

and Abreu and Manea (2012b), feature sequential agreement.

The next result establishes that any weakly efficient LMPE whose limiting payoffs do not

converge to shifted Rubinstein payoffs must be sequential. Two LMPE are said to be payoff

equivalent if the ex-ante limiting values coincide in the two equilibria for all players.

Proposition 6 Any weakly efficient LMPE that is not payoff equivalent to a strongly efficient

LMPE is sequential. Moreover, sequential LMPE exist in some markets.

An important and immediate implication of Proposition 6 is that when shifted Rubinstein

payoffs are outside of the core either there is no efficient LMPE or all efficient LMPE are

sequential.25 Proposition 6 therefore helps pin down when weakly efficient LMPE exist. When

exit is sequential, all players remain in the market until a given core match exits, thereby acting

effectively as permanent outside options for this match. Proposition 6 further reinforces our

central message that inefficiencies are ubiquitous. Indeed, even in a weakly efficient LMPE,

outside options cannot affect bargained outcomes without being exercised with strictly positive

probability if they are temporary and can be lost on the equilibrium path. Nevertheless,

people who are efficiently matched can provide effectively permanent outside options through

sequential exit.

It is intriguing that sequential exit can occur in equilibrium. The observation conforms

with empirical regularities in some matching markets which can clear from the top down.

However, delay is a knife-edge phenomenon in most bargaining models without asymmetric

information. It might be thought that sequential LMPE will require very specific parameter

restrictions on the bargaining problem. To address this issue systematically, we conclude by

characterizing the set of sequential LMPE in the context of a 4 player market with equal

proposer probabilities. Let N = {a, b, c, d} and pi = p for i ∈ N . To avoid redundancies when

stating results we adopt the following labelling convention:

• ab and cd are the core matches, sab + scd > sad + sbc;

• ab is the most valuable core match, sab ≥ scd;

• ad is the most valuable non-core match, sad ≥ sbc.

25By Proposition 5, if a LMPE is payoff equivalent to a strongly efficient LMPE, it must generate shifted
Rubinstein payoffs. But, if these payoffs are outside of the core, at least one player has a strict incentive to
offer to an inefficient partner.
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We also omit the dependence on N when obvious. The final result on efficient LMPE charac-

terizes payoffs in a sequential LMPE, and delivers necessary and sufficient conditions for the

existence of such an LMPE.

Remark 3 Given our convention, if a sequential LMPE exists, then for all δ close to 1

πab = πba = πcc = πda + πdd = 1, πda > 0, limδ→1 πdd = 1.

Moreover, in any such LMPE

limδ→1 Va = sad − σd limδ→1 Vc = σc

limδ→1 Vb = sab − sad + σd limδ→1 Vd = σd

Finally, a sequential LMPE exists if and only if

sab > sad >
sab + scd

2
> sbc > scd and

sbc − scd
2(sab − sad)

≥ sbc + scd
sab + scd

. (6)

The remark pins down agreement probabilities at a high frequency of interaction in any se-

quential LMPE. In such equilibria, players a and d always reach agreement before c and d. As

c and d end up bargaining bilaterally with each other, they have limit payoffs equal to their

Rubinstein payoffs. Thus, when players a and d are bargaining, it is as if a had a permanent

outside option of value sad − σd. As sad − σd > σa, this outside options binds and a gets a

limit payoff of sad−σd, leaving b with the residual surplus sab− (sad−σd).26 This equilibrium

conforms to previous intuitions. Alternatives within the market can affect the terms of trade

only if they remain in the market indefinitely.

Conditions (6) have natural interpretations. Given our labeling convention, the require-

ment that sab > sad > sbc > scd implies that the market must be vertically differentiated.

These surpluses are not possible in either Abreu and Manea (2012b) or Gale and Sabourian

(2006). Moreover, the first match to reach agreement is the most valuable core match. We

therefore rationalize top-down sequential exit as a limiting efficient market outcome in a com-

plete information decentralized bargaining game. Delay in bargaining is hard to get, but real

world experience suggests that matching markets can occasionally be held up while clearing

from the top. Our model delivers such behavior as an equilibrium phenomenon in thin markets

without any asymmetric information. The second condition in (6) requires sad > (sab+scd)/2,

or equivalently sad > σa+σd. This condition implies that shifted Rubinstein payoffs are outside

26In effect b also has a permanent outside option, worth sbc − σc. However, this outside option does not
bind. Payoffs are thus pinned down by chains of outside options in any sequential LMPE. These chains are
evocative of those discussed in Elliott (2015).
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of the core. If so, by Proposition 5, there is no strongly efficient LMPE, and by Proposition

6 any weakly efficient LMPE must be sequential.

(I) (II)

Figure 6: Panel I plots the lower bound for ζ for different combinations of scd and sbc. As
ζ < 1, regions of the parameter space where lower bound is greater than 1 are regions in which
no sequential LMPE exists. Panel II shows the lower bound only when ζ < 1.

The final condition in (6) is the hardest to interpret. We will argue that, in combi-

nation with the other conditions, it stipulates that the market must be highly vertically

differentiated. To better understand this condition, it is instructive to consider the poten-

tial extent of mismatch inefficiencies in the assignment economy. For convenience normal-

ize sab = 1 and define the fraction of surplus that can be lost because of mismatch to be

ζ = (sad + sbc) / (1 + scd) ∈ (0, 1). The final and key restriction to the parameter space iden-

tified in Remark 3 can then be restated in terms of this parameter as requiring

ζ ≥ 2(1 + sbc)(sbc + scd)− (1 + scd)(sbc − scd)
2(sbc + scd)(1 + scd)

.

We plot this lower bound on the relative efficiency of the wrong matches in Figure 6. The

plot shows that when scd is relatively large there is no sequential LMPE. More precisely there

is a sequential LMPE only if scd < 1− 2sbc. Since by Remark 3 sbc > scd, a sequential LMPE

exists only if scd/sab < 1/3. So, the less productive core match must be at least three times

less productive than the most productive core match. This upper bound on the relative value

of scd becomes much tighter when the potential loss associated with mismatch ζ is at least

5%. Indeed, for ζ ≤ 0.95 a similar calculation establishes that scd/sab < 0.133; so scd can

be at most 13.3% as productive as sab.
27 We conclude that sequential LMPE only exist in

sufficiently vertically differentiated markets, and only in extremely differentiated markets if

mismatch generates a considerable amount of inefficiency.

27Example 4 in Section 6 provides some specific parameter values for which sequential exit occurs. In this
example scd/sab = 0.1 and ζ = 0.955.
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8 Discussion

Assortative Matching: The labor market search literature has extensively studied a

particular form of heterogeneity, vertically differentiated markets with assortative matching,

as in, for instance, Shimer and Smith (2000), Eeckhout (2006), Smith (2006), Eeckhout and

Kircher (2010). To appreciate the content of our efficiency implications we consider this special

case of our model.

It will be convenient to introduce some new notation. For this section we refer to the two

sides of the market as workers and firms. Let W = {1, ..., w} and F = {1, ..., f} denote the

sets of workers and firms respectively, and let the surplus generated by worker i and firm j be

given by a function S : W × F → R+ satisfying the following conditions:

[C1] S(i, j) > S(i′, j) if and only if i < i′;

[C2] S(i, j) > S(i, j′) if and only if j < j′;

[C3] S(i, j)− S(i, j′) > S(i′, j)− S(i′, j′) if and only if i < i′ and j < j′.

Condition C1 requires workers to be vertically differentiated, C2 requires firms to be vertically

differentiated, and C3 requires increasing differences in the surpluses that worker-firm pairs

can generate. Surplus is generated only in matches between workers and firms. In contrast

to our previous notation, there can now be a worker-type i and a firm-type i. Thus typically

S(i, i) 6= 0 and S(i, j) 6= S(j, i) unless the surplus generated by the ith ranked worker matching

to the jth ranked firm is the same as the surplus generated by jth ranked worker matching to

the ith ranked firm. Let the set of functions satisfying these conditions be denoted by S̄. It

is well known that in such markets the unique core match is the assortative match in which

worker k is matched to firm k if k ≤ min{w, f}, while all the remaining agents are unmatched.

We use our efficiency results to find conditions under which decentralized bargaining would

result in an efficient and thus assortative match. For convenience, let the vector p denote the

proposal probabilities of firms, where entry pk is the proposal probability of firm k, and let

q denote the proposal probabilities of workers, where entry qk is the proposal probability of

worker k. Thus, a vertically differentiated market is defined by the tuple {W,F, S, p, q}.

Remark 4 If w = f , pk = qk = p for all k ≤ max{w, f}, and S(i, j) = S(j, i) for all

i, j ≤ min{w, f}, then for all δ close to 1 there is an efficient MPE. However, if at most two

of these three conditions hold, there exists a vertically differentiated markets for which there

is no weakly efficient LMPE.

Remark 4 shows that, although there are natural conditions under which there is a strongly

efficient MPE (the strongest efficiency criterion of the four we consider), these conditions are

fairly restrictive and require the market to be highly symmetric. There must be the same

28



number of workers as firms, the kth ranked worker and firm must have the same proposal

probabilities, and the surplus generated by the ith ranked worker matching to the jth ranked

firm must be the same as the surplus generated by the jth ranked worker matching to the

ith ranked firm. When any one of these conditions is not satisfied, there are surpluses S ∈ S̄
for which there is no weakly efficient LMPE (the weakest efficiency criterion of the four we

consider).

Random Matching: The directed search matching protocol considered in our analysis was

chosen to minimize frictions. To appreciate the pure delay frictions that arise when players

cannot choose whom to bargain with, consider the eight-player line network shown in Figure

7. We provide a brief discussion of such inefficiencies as means of comparison to our model.

A comprehensive analysis of the example appears in Section 4 of Abreu and Manea (2012b).

a

b

c

d

e

f

g

h

1 1 1 1 1 1 1

Figure 7: The Eight-Player Line Network

Suppose that matching opportunities are as shown in Figure 7 and that each link is selected

with equal probability. An efficient LMPE requires players to disagree with a probability that

converges to 1 whenever links bc, de or fg are selected. For this to be the case, the combined

continuation values from disagreement of the two players on the link must exceed 1 in the

limit, or converge to 1 from above. With the random matching protocol, efficient LMPE exist

in the line networks with 4 or 6 players. But, this is not the case in the line network with 8

players. In a four-player line network, the two end players are weak as they get no surplus

when the middle players agree. An efficient LMPE exists in which, for δ close to 1, the two

middle players exploit such advantage by agreeing with a vanishingly small probability, and in

which the continuation values of the end players are diminished to the point where the middle

players are indifferent between delaying and agreeing with each other. With eight players, this

no longer works. In such networks, players d and e disagree when initially matched. Despite

this, their bargaining positions improve relative to the four-player line network as they retain

the option to agree with each other in subgames in which their core partners exit. Because

of this, players b and c strictly prefer to agree if initially matched for sufficiently high values

of δ. Abreu and Manea (2012b) establish in fact that, in the unique LMPE, players b and c

must inefficiently agree with probability 1 when matched even when delay costs vanish. If,

instead, players were selected to propose with equal probability and were able to choose to
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whom to agree with, a strongly efficient MPE would always exist as shown in Proposition 7

of the online appendix.

Preventing players from choosing bargaining partners amplifies frictions, as players have

to either hold out for their desired partner when presented with an alternative matching

opportunity or agree with inefficient partners. We opted for a setting in which players were

allowed to choose bargaining partners to diminish the hold-up frictions associated to waiting

for the preferred match. Yet, we still found frictions to be common feature of decentralized

negotiations because of non-stationarities in the evolution of bargaining power.

Limitations and Evidence: We study the Markov perfect equilibria of a simple bargaining

game with many buyers and many sellers. Our protocol is fairly standard and chosen to give

the best chance to efficient outcomes while remaining decentralized. To this end, we allow the

proposer to choose whom to offer to, study the generic case in which the efficient match is

unique, and look at equilibria in which delay costs are small. A key feature of our model is

that players’ bargaining positions (and, more precisely, their limit payoffs) can change stochas-

tically. We find that these non-stationarities in the evolution of bargaining power are closely

linked to inefficiencies, which can include both mismatch and delay. In all weakly efficient

LMPE, players’ limit payoffs are stationary on the equilibrium path and do not depend on the

order in which people are selected to propose. This can occur either because no alternative

match provides a binding alternative (Proposition 3), or because binding alternative matches

are only provided by those who are unmatched when the market clears efficiently (Proposition

4), or because there is sequential exit and the market endogenously remains stationary while

all players wait for a given pair to exit the market before reaching agreements themselves

(Proposition 5).

While we view our protocol as natural, many alternative bargaining protocols are equally

reasonable. For instance, random matching protocols may describe players bumping into

each other at random, while the protocol we study might be a better fit for thin, highly

heterogenous markets, in which everyone knows everyone else, and in which search is more

likely to be directed. It is not clear whether similar results would hold in the alternative

model with random matching. On the one hand, in the limit incentives look very similar

to our model, but on the hand, away from the limit random matching forces players to forgo

matching inefficiently but immediately, in order to match to their efficient partner later. There

are many other alternative protocols. One would be to include the right to make a counter-

offer back to the proposer. Another would make a player declining an offer the new proposer.

One more would fix a predetermined and commonly known proposer order. We would not

expect results close to ours to hold in these environments, as strategically these environments

seem fundamentally different.
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In practice, interactions in markets are unlikely to be as constrained as any of these bargain-

ing protocols; and players are likely to have much more freedom to endogenously determine,

among other things, who moves when. Indeed, we show that there always exist offer proba-

bilities that generate efficient outcomes. If these are endogenously determined then efficiency

might be improved or even restored. Nevertheless, while norms might evolve to affect offer

probabilities and increase efficiency, they would need to be tailored to the intricacies of a given

market to eliminate inefficiencies (see the discussion following Proposition 4).

Fully endogenizing who makes offers to whom when would come at the cost of tractability.

The value of simple theory comes from its ability to provide useful insights in richer settings.

Whether our theory obtains this goal or not is ultimately an empirical question.28

While identifying mismatch empirically is hard because counterfactual productivities are

not directly observed, Elliott and Agranov (2017) run a laboratory experiment to circumvent

this issue. They begin by studying an experimental protocol that mirrors our bargaining proto-

col. They find extensive inefficiencies, and show that the Markov perfect equilibrium outcomes

correctly predict which markets exhibit mismatch and which exhibit more mismatch than oth-

ers. However, inefficient matches occur considerably more often than predicted.29 They then

run a second laboratory experiment, but without an experimental protocol. Participants are

permitted to make offers to anyone else at any time, accept offers they have received at any

time and withdraw offers they have made at any time. They find that inefficiencies remain

in the market.30 Indeed, in this experiment there is not sufficient evidence to reject that

inefficiencies are different from the MPE predictions at the 5% level. While this should not

be interpreted as evidence that players play the MPE of our bargaining game in an entirely

different bargaining environment, it does suggest that in more realistic bargaining situations

the inefficiencies we document remain, and that the MPE provide useful intuitions.31
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9 Proof Appendix

Proof of Proposition 1. We first establish the characterization for MPE values, and then

proceed to establish existence. Fix a discount factor δ ∈ (0, 1). Consider an MPE strategy

profile (ρ, χ, α) and its corresponding MPE payoffs V (A) ∈ R|A| for any active player set

A ⊆ N . Fix any subset A ⊆ N . By subgame perfection, we know that the acceptance

decision by a player j ∈ A faced with an offer x must be such that he accepts an offer if

x > δVj(A), and rejects it if x < δVj(A). Clearly, this implies that it cannot be optimal to

offer x > δVj(A) to player j, as the proposer could profitably deviate to an offer in (δVj(A), x).

Thus, in any MPE every player would offer at most δVj(A) to player j, and the only offers

player j may accept with positive probability are offers of δVj(A) with positive probability.

Therefore, a proposer i ∈ A would make offers with positive probability only to a player j

that maximizes his residual payoff sij−δVj(A). Recall that πij(A) is the joint probability that

player i offers δVj(A) to player j and that the offer is accepted, and that πii(A) is the joint

probability that i does not agree when proposing. We frequently abuse notation by dropping

the dependence of πij on A where it should not cause confusion. The payoff of any player

k ∈ A\ij at the beginning of the following period is given by Vk(A\ij) if an agreement was

reached, and by Vk(A) otherwise. Therefore, at a history in which the set of active players is

A and in which i is the proposer, the expected payoff of a player k ∈ A\i must be given by

∑
j∈A\ikπijδVk(A\ij) + (1−

∑
j∈A\ikπij)δVk(A).
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When i is chosen to propose, if δ[Vi(A) + Vj(A)] < sij for some j ∈ A\i, then i offers with

certainty to players j who maximize sij − δVj(A), and agreement obtains with certainty. The

latter observation obtains from the following argument. If πii > 0, then the expected payoff

conditional on offering δVj(A) to players j who maximize sij − δVj(A),

∑
j∈A\iπij(sij − δVj(A)) +

(
1−

∑
j∈A\iπij

)
δVi(A),

must be strictly smaller than sij−δVj(A). The payoff conditional on i offering δVj(A)+ε to j,

for ε > 0 is sij−δVj(A)−ε, as j accepts with probability 1 any offer exceeding δVj(A). Hence,

it cannot be optimal to offer more than δVj(A). It also cannot be optimal to offer less than

δVj(A) since all such offers are rejected and since δVi(A) < sij − δVj(A). Thus, if πii > 0 and

δ[Vi(A) + Vj(A)] < sij, a profitable deviation always exists. Therefore, δ[Vi(A) + Vj(A)] < sij

for some j ∈ A\i implies πii = 0. Similarly, δ[Vi(A) + Vj(A)] > sij for any j ∈ A\i implies

πii = 1. If maxj∈A\i {sij − δ[Vi(A) + Vj(A)]} = 0, then πii ∈ [0, 1]. Thus, any agreement

probability πi ∈ ∆(A) for player i compatible with equilibrium values V ∈ R|A| must belong

in

Πi(V |A) =

{
πi ∈ ∆(A)

∣∣∣∣∣ πii = 0 if δVi < max j∈A\i {sij − δVj}
πik = 0 if sik − δVk < max{δVi,maxj∈A\i {sij − δVj}}

}
.

Next consider the correspondence fi(V |A) : R|A| ⇒ R|A|, where for k 6= i,

fi(V |A) =

 fii(V |A)

fik(V |A)

...

 =


 (1− πii) max j∈A\i {sij − δVj}+ πiiδVi∑

j∈A\ikπijδVk(A\ij) + (πik + πii)δVk

...


∣∣∣∣∣∣∣ πi ∈ Πi(V |A)

 ,

where the expressions in the square brackets give the components of a |A| × 1 vector. Let

fik(V |A) denote the kth entry of fi(V |A). The correspondence fik(·|A) identifies the set of

expected payoffs compatible with our partial equilibrium analysis for a player k ∈ A and for

any history in which A is the set of active players and i is the proposer. Next, define the

correspondence

F (V |A) =
∑

i∈Apifi(V |A) +
(
1−

∑
i∈Api

)
δV . (7)

The kth entry of such a correspondence, Fk(·|A), identifies the set of possible expected payoffs

for a player k ∈ A for any history in which A is the set of active players. Thus, the argument

establishes that V is an MPE payoff only if it is a fixed point of the correspondence in (7),

V ∈ F (V |A).

Next, we establish that the converse must hold too. In particular, we argue that if V (A) ∈
F (V (A)|A) for any subset A ⊆ N , then V (A) is an MPE payoff profile for any subgame
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in which A is the set of active players. At any subgame in which A are the active players,

consider a strategy in which any player i ∈ A chooses ρi(A) = πi, χi(j, A) = δVj(A), and

αi(j, x, A) =

{
1 if x ≥ δVi(A)

0 if x < δVi(A)
.

For any finite set of players N , the proposed strategy clearly must be an MPE in any subgame

in which no more than one player is active, as any such subgame is eventless. By induction,

suppose that the proposed strategy is an MPE for any subset of active players of size k ≤ n−1,

in order to show that it is an MPE for any subgame in which the set of active players has

size k + 1. Consider a subgame in which the set of active players A has cardinality k + 1.

Fix an MPE payoff profile V (A′) for all subgames in which the cardinality of the set of active

players A′ does not exceed k. Furthermore, given such values, suppose that we can find a

payoff profile V (A) such that V (A) ∈ F (V (A)|A) (we establish below that such a fixed point

exists). If so, no player receiving an offer can profitably deviate from strategy α, as no change

in the acceptance rule can strictly increase the payoff. Similarly, given the acceptance rule, the

proposer’s strategy (ρ, χ) is optimal given that offers are made only to those players who leave

the highest residual surplus to the proposer (provided that such surplus exceeds the value of

being unmatched). Thus, V (A) is an MPE payoff in any subgame with a set of active players

A. Consequently, if V (A) ∈ F (V (A)|A) for any subset A ⊆ N , then V (A) is an MPE payoff

profile.

To establish existence, also proceed by induction. Existence follows in subgames in which

no more than one player is active, as such subgames are eventless. Assume by induction that an

MPE exists for any subset of active players of size k ≤ n−1, in order to show that it exists for

any subgame in which the set of active players A has size k+1. If so, consider MPE strategies

for all subgames of size k and derive MPE payoffs for all such subgames. Given such values,

construct the correspondence F (·|A) as in (7). Observe that the correspondence Πi(·|A) is

upper-hemicontinuous with non-empty convex images. Thus, fi(·|A) is upper-hemicontinuous

with non-empty convex images; and so, the correspondence F (·|A) is upper-hemicontinuous

with non-empty convex images, as it is a convex combination of the correspondences fi(·|A)

for i ∈ A. By Kakutani’s fixed point Theorem F (·|A) has a fixed point. Moreover, such a

fixed point is an MPE payoff of this subgame, and can be used to construct consistent MPE

strategies and consequently agreement probabilities π ∈ ∆(A)N in every subgame, as argued

above.

Proof of Proposition 2. For convenience, define the limiting agreement probability for a

given player j ∈ A\E as βj(A) = limδ→1 pjπjη(j)(A), and let βB(A) =
∑

k∈Bβk(A) for any

B ⊆ A. Recall that V̄j(A) = limδ→1 Vj(A). Observe that for any active player set A ∈ C(N)
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such that A\E 6= ∅, there exists a player i ∈ A\E such that βi(A) > 0. This is the case since

weak efficiency and βi(A) = 0 for all player i ∈ A\E, imply π̄ii(A) = 1 for all players i ∈ A\E.

But, if so, for δ close to 1, any player i would weakly prefer delaying to offering to η(i), or

equivalently

δVi(A) + δVη(i)(A) ≥ siη(i). (8)

This would lead to a contradiction though as the sum of payoffs exceeds total surplus

∑
i∈AVi(A) ≥

∑
i∈A\EVi(A) ≥ (1/δ)

∑
i∈A∩P1

siη(i) >
∑

i∈A∩P1
siη(i)

where the first and third inequalities are trivial while the second holds by adding the inequal-

ities in (8) and observing that siη(i) = 0 if i ∈ E. Thus, in any non-trivial active player set

A ∈ C(N) of any weakly efficient LMPE, there exists a player i ∈ A\E such that βi(A) > 0.

To prove the result, we proceed by induction on the size of the active player set within

C(N). We show that in any weakly efficient LMPE V̄i(A) + V̄η(i)(A) = siη(i) for any i ∈ A\E
and any A = C(N). The latter then immediately implies surplus maximization by feasibility.

If E 6= ∅, begin by considering the active player set E ∈ C(N). If so, any weakly efficient

LMPE trivially maximizes surplus as all links are worth zero. Next, consider any active player

set A = E∪{i, η(i)} for some i ∈ N\E. As the LMPE is weakly efficient, there exists a player

j ∈ A\E such that βj(A) > 0. But if so, by taking limits of system (1), we obtain

V̄j(A) = βj(A)(siη(i) − V̄η(j)(A)) + (1− βj(A))V̄j(A).

The latter implies that V̄i(A) + V̄η(i)(A) = siη(i). Finally, by induction assume that any weakly

efficient LMPE satisfies V̄i(A) + V̄η(i)(A) = siη(i) for any i ∈ A\E and any A ∈ C(N) with

cardinality |A| ≤ |E|+ 2k. Consider any set A ∈ C(N) with cardinality |A| = |E|+ 2(k + 1).

For any player i ∈ A\E, defining A(i) = [A\E]\{i, η(i)} and taking limits of system (1)

establishes that

(βA\E(A)− βη(i)(A))V̄i(A) = βi(A)
(
siη(i) − V̄η(i)(A)

)
+
∑

k∈A(i)βk(A)V̄i(A\kη(k)). (9)

By the induction hypothesis, we know that for all k ∈ A′

V̄i(A\kη(k)) + V̄η(i)(A\kη(k)) = siη(i).

Exploiting this observation while adding equation (9) for player i to that for player η(i),

implies that

βA\E(A)(V̄i(A) + V̄η(i)(A)) =
∑

k∈A\Eβk(A)siη(i),
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or equivalently V̄i(A) + V̄η(i)(A) = siη(i) since by weak efficiency there exists a player j ∈ A\E
such that βj(A) > 0. The latter concludes the proof and establishes that any weakly efficient

LMPE maximizes surplus.

Proof of Proposition 3. We begin by pinning down strongly efficient MPE payoffs. Consider

an MPE strategy in which any player i ∈ N offers to his core match η(i) with probability 1 at

any active player set A ∈ C(N). If players follow the prescribed strategy, only core matches

are ever consummated, and only subgames A ∈ C(N) occur on the equilibrium path. As the

core match maximizes the total surplus in an assignment economy, the core match of a player

does not change when other core pairs exit the market (that is, it coincides at any subgame

A ∈ C(N)). By Proposition 1, we know that any proposer i ∈ A necessarily offers an amount

equal to δVη(i)(A) and that any player i ∈ A accepts any offer exceeding δVi(A). As players

negotiate with only core partners on the equilibrium path, at any A ∈ C(N) we guess that

Vi(A) = Vi(A\jη(j)) whenever i 6∈ {j, η(j)}. (10)

Thus, at any A ∈ C(N), equilibrium payoffs for every player i ∈ A satisfy

Vi(A) = pi(siη(i) − δVη(i)(A)) + (1− pi)δVi(A).

Solving the latter equation for player i with the one for player η(i) implies that

Vi(A) =
pi

1− δ + δpi

(
siη(i) − δ

pη(i)

1− δ + δpη(i)

(siη(i) − δVi(A))

)
,

which after some manipulation yields

Vi(A) =
pi

1− δ + δpi + δpη(i)

siη(i). (11)

To establish the first part then, by contradiction postulate the existence of a weakly efficient

MPE that is not strongly efficient. If so, along any equilibrium path, players either agree with

their core partner or delay, which implies that any equilibrium-path subgame is associated

to an active players A set which belongs to C(N). Formally, such a requirement amounts to

finding a fixed point of the MPE characterization in Proposition 1 which satisfies πii(A) +

πiη(i)(A) = 1 for any i ∈ A and any A ∈ C(N). If such an equilibrium were to exist, an

argument equivalent to the first part of the proof would imply that for any i ∈ A and any

A ∈ C(N)

Vi(A) =
piπiη(i)(A)

1− δ + δpiπiη(i)(A) + δpη(i)πη(i)i(A)
siη(i).
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But this would give rise to the desired a contradiction as any player i would strictly pre-

fer immediate agreement with his core match rather than disagreement, since Vi(A) strictly

increases in πiη(i)(A).

Proof of Proposition 4. First, we establish part (a). Payoffs in any subgame A ∈ C(N) of

an efficient MPE are pinned down by Proposition 3 for any δ ∈ (0, 1). We show that complying

with efficient strategies yields an equilibrium for any sufficiently high value of δ. Recall that

any player j ∈ A accepts any offer that is worth at least δVj(A). Suppose, by contradiction,

that some player i ∈ A at some subgame A ∈ C(N) has a profitable deviation which entails

offering to j 6= η(i) when all players comply with strongly efficient strategies. For such an

offer to be profitable for i, at any sufficiently high δ it must be that

sij − δVj(A) > siη(i) − δVη(i)(A). (12)

However, by taking limits, as δ converges to 1, on both sides of this inequality, we obtain

sij − σj ≥ siη(i) − ση(i) = σi.

This obviously contradicts the assumption that Rubinstein payoffs are in the interior of the

core: σi + σj > sij for all i, j ∈ A such that j 6= η(i). Thus, any player i ∈ A at any subgame

A ∈ C(N) cannot have a profitable deviation when making offers if the discount factor is

sufficiently high, which implies the existence of a strongly efficient MPE for any δ close to 1.

Next, we establish part (b). By contradiction, assume that a strongly efficient MPE exists

for any δ close to 1, but that σi + σj < sij for some pair i, j ∈ N . Recall that player i has a

strictly profitable deviation from a strongly efficient equilibrium if condition (12) holds. Since

δVi → σi and δVj → σj, condition (12) must hold for sufficiently high values of δ and player i

must have a profitable deviation for any sufficiently high value of δ.

Proof of Proposition 5. To pin down LMPE values, for any player i ∈ N , define the outside

option partner for player i as follows

λ(i) =

{
arg maxj∈E sij if ωi > 0

i if ωi = 0
.

Therefore, ωi = siλ(i). An LMPE is strongly efficient if at any active player set A ∈ C(N), all

players i 6∈ E agree with their core matches η(i) with a probability that converges to 1 (that

is, π̄iη(i)(A) = 1), and all players i ∈ E delay with a probability that converges to 1 (that

is, π̄ii(A) = 1). Recall that only subgames A ∈ C(N) occur on the equilibrium path with

positive probability in the limit in a strongly efficient LMPE. Moreover, outside options λ(i)
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must coincide at every subgame A ∈ C(N) since the core match coincides at any such active

player set and since all core unmatched players are active at any such active player set.

To establish that any strongly efficient strategy compatible with equilibrium necessarily

yields shifted Rubinstein payoffs as limiting payoffs, we proceed by induction on the size of

the active player set within C(N), and show that for any A ∈ C(N) any strongly efficient

LMPE satisfies

V̄j(A) = σ̄j for any j ∈ A. (13)

First, consider the smallest active player set in C(N), namely, A = E, when such a set is

not empty. If so, sij = 0 for any i, j ∈ E. Obviously, Vj(E) = σ̄j = 0 for any j ∈ E. Next,

consider any active player set A = E ∪ {i, η(i)} for some i ∈ N\E. Clearly, not both players

in {i, η(i)} can have binding outside options. If they did, then

siλ(i) + sη(i)λ(η(i)) ≥ siη(i),

and an alternative match that generates a weakly higher surplus would be feasible (since both

λ(i) and λ(η(i)) would be unmatched in the core), thereby contradicting the optimality of

the core match or its uniqueness. Without loss of generality, if a player has a binding outside

option, let that player be i, so that σ̄i = max{ωi, σi} and σ̄η(i) = siη(i) − σ̄i. Observe that

if a player j ∈ E plays a strategy converging to efficiency, then for sufficiently high δ he

must weakly prefer delaying to offering to a player in {i, η(i)}, as π̄jj(A) = 1. If so, then

vj(A) = δVj(A) and the valuation of such a player necessarily satisfies

V̄j(A) = (1− pi − pη(i))V̄j(A) ⇒ V̄j(A) = 0,

by the characterization in Proposition 1, the definition of strongly efficient LMPE, and the

linearity of the limit operator. Therefore, condition (13) holds for any player j ∈ E. Next,

consider player j ∈ {i, η(i)}. If complying with a strongly efficient strategy is a limiting

equilibrium, then for sufficiently high δ it must be that vj(A) = sjη(j)−δVη(j)(A), as π̄jη(j)(A) =

1. If so, then for any player k ∈ E,

sjη(j) − δVη(j)(A) ≥ sjk − δVk(A) = sjk,

which in turn implies that

V̄j(A) = pj
(
sjη(j) − V̄η(j)(A)

)
+ (1− pj)V̄j(A) ⇒ V̄j(A) ≥ sjk,

which establishes that V̄j(A) ≥ ωj. If indeed V̄j(A) > ωj for any player j ∈ {i, η(i)}, then
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for any player k ∈ E and any δ close to 1, we would have that that δVk(A) + δVj(A) > sjk.

If so, no player k would ever agree with j. If so, the strategy would be strictly efficient for

sufficiently high δ and the result would follows by Proposition 4 as

V̄j(A) = lim
δ→1

pj
1− δ + δpj + δpη(j)

sjη(j) = σj > ωj.

Otherwise, suppose that V̄j(A) = ωj. If so, taking limits on the characterization in Proposition

1 implies that

V̄η(j)(A) = pη(j)

(
sjη(j) − V̄j(A)

)
+ (1− pη(j))V̄η(j)(A) = sjη(j) − ωj.

The previous observations together imply that V̄k(A) = σ̄k for any k ∈ A, as V̄i(A) = σ̄i =

max{ωi, σi} and V̄η(i)(A) = siη(i) − σ̄i.

Next, by induction assume that V̄j(A) = σ̄j for any j ∈ A and any active player set

A ∈ C(N) with cardinality |A| = |E| + 2k. If so, we show V̄j(A) = σ̄j for any j ∈ A and

any set A ∈ C(N) with cardinality |A| = |E| + 2(k + 1). Consider such a set A. If a player

j ∈ E complies with a strongly efficient strategy, then vj(A) = δVj(A) for δ close to 1, and

the valuation necessarily satisfies

V̄j(A) = (1− pA\E)V̄j(A) +
∑

k∈A\EpkV̄j(A\kη(k))

= (1− pA\E)V̄j(A) ⇒ V̄j(A) = 0,

where the first equality follows from the characterization in Proposition 1 and the definition

of strongly efficient strategy, while the second equality follows from the induction hypothesis.

If a player j ∈ A\E complies with a strongly efficient strategy, then vj(A) = sjη(j)− δVη(j)(A)

for δ close to 1. Thus, defining A(j) = [A\E]\{j, η(j)}, the valuation necessarily satisfies

V̄j(A) = (1− pA(j) − pj)V̄j(A) + pj(sjη(j) − V̄η(j)(A)) +
∑

k∈A(j)pkV̄j(A\kη(k))

= (1− pA(j) − pj)V̄j(A) + pj(sjη(j) − V̄η(j)(A)) + pA(j)σ̄j,

where equalities hold for the same reasons stated above. In this case, the limiting value

equations for players j and η(j) admit a unique solution at

V̄j(A) = σ̄j and V̄η(j)(A) = σ̄η(j).

To prove the second part of the result observe that strongly efficiency LMPE mandate play

according to the strategies characterized above and payoffs converging to shifted Rubinstein
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payoffs,

V̄i(A) = σ̄i for any i ∈ A and any A ∈ C(N).

Towards a contradiction, suppose that agents complied with these strategies, but that σ̄i+σ̄j <

sij for some pair i, j ∈ N . If so, the definition of shifted Rubinstein payoffs would then

immediately imply that j /∈ {η(i), λ(i)}. If so however, i would have a profitable deviation

when selected to make the first offer in the game. Subgame perfection ensures that j would

accept any offer greater than δVj(A). Now if the player complied with the prescribed strategy

by offering to his core partner, his limiting payoff would amount to

limδ→1 vi(A) = σ̄i.

However, by deviating and offering to j exactly δVj(A), his payoff would increase to

limδ→1 [sij − δVj(A)] = sij − V̄j(A) = sij − σ̄j > σ̄i.

Thus, for any value of δ sufficiently close to 1, player i would have a strict incentive to deviate

and make an acceptable offer to j.

Proof of Proposition 6. In a weakly efficient LMPE, π̄iη(i)(A) + π̄ii(A) = 1 for any player

i ∈ A for every A ∈ C(N). Thus, all players i ∈ E delay with a probability converging

to 1 (that is, π̄ii(A) = 1). In the limit, if all players comply with such strategies, only

subgames A ∈ C(N) occur on the equilibrium path with positive probability. Recall that

the proof of Proposition 2 established that at any active player set A ∈ C(N) such that

A\E 6= ∅ of a weakly efficient LMPE, there exists a player i ∈ A\E such that βi(A) > 0

(where βi(A) = piπ̄iη(i)(A)). To establish that any weakly efficient LMPE that is not strongly

efficient must be sequential, we again proceed by induction on the size of the active player

set within C(N), and show that for there exists A ∈ C(N) such that only one core match

agrees. That is for some i ∈ A\E such that (5) holds. First, consider the smallest active

player set in C(N), namely, A = E, when such set is not empty. If so, any weakly efficient

LMPE is strongly efficient as the two definitions coincide. Next, consider any active player

set A = E ∪ {i, η(i)} for some i ∈ N\E. Clearly, there must be agreement on the core match,

that is πiη(i)(A) = πη(i)i(A) = 1, as δVi(A) + δVη(i)(A) < siη(i) by feasibility. Thus, any weakly

efficient LMPE is strongly efficient.

Next, assume by induction that any weakly efficient LMPE is strongly efficient for any

active player set A ∈ C(N) with cardinality |A| = |E|+ 2k. Consider any set A ∈ C(N) with

cardinality |A| = |E| + 2(k + 1). If a player j ∈ E complies with a weakly efficient strategy,
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then vj(A) = δVj(A) for δ close to 1. If so, the valuation necessarily of j satisfies

V̄j(A) = (1− βA\E(A))V̄j(A) +
∑

k∈A\Eβk(A)V̄j(A\kη(k))

= (1− βA\E(A))V̄j(A) ⇒ V̄j(A) = 0,

where the first equality follows by taking limits of value equations and the definition of weakly

efficient strategy, where the second equality follows by the induction hypothesis, and where

the implication trivially obtains as βA\E(A) > 0 given that at least 1 core match agrees with

positive probability in the limit.

If a player j ∈ A\E complies with a weakly efficient strategy, then for δ close to 1 it must

be that vj(A) = max{δVj(A), sjη(j) − δVη(j)(A)} by weak efficiency. Taking limits of value

equations for any j ∈ A\E while defining A(j) = [A\E]\{j, η(j)} establishes that

V̄j(A) = (1− βA(j) − βj)V̄j(A) + βj(A)
[
sjη(j) − V̄η(j)(A)

]
+

∑
k∈A(j)

βk(A)V̄j(A\kη(k))

= (1− βA(j) − βj)V̄j(A) + βj(A)
[
sjη(j) − V̄η(j)(A)

]
+ βA(j)(A)σ̄j, (14)

where the second equality follows by weak efficiency and induction. First suppose that βj(A) =

0 for all players j ∈ A(i). If so, the equilibrium must be sequential by definition.32 Next

consider a weakly efficient LMPE in which least two core matches in A reach agreement with

positive probability. If so, βi(A) > 0 and βj(A) > 0 for i 6= η(j), and thus βA(j) > 0 for any

j ∈ A\E. But, if so, the limiting value equations (14) for players j and η(j) admit a unique

solution at

V̄j(A) = σ̄j and V̄η(j)(A) = σ̄η(j).

The weakly efficient LMPE must be payoff equivalent to a strongly efficient LMPE at A

thereby fulfilling the induction hypothesis. This establishes that any weakly efficient LMPE

that is not strongly efficient must be sequential.

The existence of sequential LMPE follows by Example 4.

32If so, V̄j(A) = σ̄j for all j ∈ A(i) ∪ E since A(j) 6= ∅ and since by induction V̄j(A\kη(k)) = σ̄j .
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